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Abstract. This paper presents GViT, a hybrid CNN-Transformer ar-
chitecture designed to improve EEG-based gaze prediction by leveraging
spatial-temporal representations of brain signals. GViT integrates convo-
lutional layers to extract local spatial features with a transformer encoder
that models global temporal dependencies, enabling robust performance
on noisy EEG data. Evaluated on the EEGEyeNet dataset, GViT consis-
tently achieves the lowest gaze prediction error among all tested models,
outperforming baseline CNN, GRU, and transformer variants. By bridg-
ing neuroscience-inspired design and deep learning advances, this work
demonstrates the effectiveness of hybrid architectures for brain signal de-
coding and introduces a modular framework applicable to a broad range
of neurophysiological time-series tasks.
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1 Introduction

Electroencephalography (EEG) data, due to its non-invasive nature and millisecond-
level temporal resolution, is widely used in brain-computer interface (BCI) ap-
plications such as cognitive workload estimation, mental health monitoring, and
gaze prediction. However, EEG analysis remains challenging due to its noisy sig-
nals, high dimensionality, and the complex spatial-temporal relationships across
channels [3, 5].

Deep learning methods, particularly Convolutional Neural Networks (CNNs)
and Transformer architectures, have shown promise in EEG-based prediction
tasks [11]. CNNs are effective in capturing localized spatial features from multi-
channel EEG data, while Transformers excel at modeling long-range temporal
dependencies through attention mechanisms [6]. Hybrid CNN-Transformer archi-
tectures have emerged to combine the strengths of both models, yet their ability
to fully capture the intricate spatial dependencies between EEG electrodes is
still limited [2, 1].

In this paper, we present a hybrid deep learning framework for EEG-based
gaze prediction, grounded in a final project conducted as part of a machine learn-
ing course. Our model incorporates convolutional layers to extract local features
from 2D-structured EEG signals and uses Transformer encoders to model global
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temporal dynamics. We explore different architecture variants and identify a con-
figuration that achieves state-of-the-art performance on the EEGEyeNet bench-
mark. Our contributions are threefold:

– We analyze the strengths and limitations of CNNs and Transformers when
applied to EEG gaze prediction.

– We design and implement a CNN-Transformer hybrid model with a novel
convolutional refinement module to enhance spatial representations before
temporal modeling.

– We evaluate our model on the Absolute Position task of the EEGEyeNet
dataset and demonstrate its performance improvement over existing base-
lines, including EEGNet, InceptionTime, and EEGViT.

Our findings suggest that well-designed hybrid architectures can significantly
improve EEG decoding accuracy without requiring external eye-tracking hard-
ware, contributing to the development of accessible and efficient BCI applica-
tions.

2 Related Work

EEG-based signal classification has long served as a cornerstone for applications
in brain-computer interfaces (BCI), with use cases ranging from cognitive work-
load estimation to emotion recognition and eye-gaze prediction [3]. Over the
years, a variety of deep learning models have been proposed to extract meaning-
ful spatiotemporal patterns from raw EEG data [11].

Early work relied heavily on convolutional neural networks (CNNs), such as
EEGNet, which introduced depthwise and separable convolutions to efficiently
model spatial patterns across EEG channels [10]. These models offered strong
performance on motor imagery and ERP datasets while maintaining low param-
eter counts for real-time BCI use [2].

Building upon this foundation, temporal convolutional approaches such as
InceptionTime [7] and architectures optimized for sequential modeling like Deep-
ConvLSTM [15] began to show improvements in capturing long-range temporal
dependencies. Transformer-based approaches further extended these capabilities
by introducing global attention.

Recent surveys and studies have highlighted the importance of deep learning
in EEG decoding. Roy et al. [24] reviewed deep learning’s rise in EEG signal
processing, emphasizing CNNs and RNNs. Ma et al. [13] proposed a hybrid
CNN-transformer model for EEG-based motor imagery classification, showing
that transformer-based modules can outperform traditional recurrent layers in
some tasks. Xu et al. [27] explored deep transfer CNN frameworks that support
EEG signal classification across subjects, an important direction for practical
BCI systems.

In parallel, more recent works have introduced attention-guided transformer
architectures tailored to EEG signals. Yi et al. [29] designed an attention-enhanced
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spatial transformer to dynamically adapt to spatial channel variations, demon-
strating strong generalization across subjects. Li et al. [12] proposed a tempo-
ral attention masking scheme to selectively emphasize relevant EEG segments,
boosting robustness against signal noise. Qu et al. [19] explored multi-task trans-
former structures that jointly optimize EEG decoding and auxiliary physiological
signals, underscoring the potential of multi-modal integration.

To address the limitations of both CNNs and transformers, hybrid CNN-
Transformer models have emerged. These architectures aim to leverage the spa-
tial locality of convolutions and the long-range dependency modeling of trans-
formers. The EEGEyeNet benchmark [8] has provided a standardized platform
for comparing such models across diverse gaze-related EEG tasks [2].

Our work builds on these developments by evaluating a hybrid CNN-Transformer
model using EEGEyeNet’s dataset, targeting eye-gaze decoding. We aim to as-
sess whether this architecture offers measurable improvements in accuracy and
robustness over prior approaches, particularly under the constraints of modest
dataset sizes and low-latency inference requirements.

3 Method

3.1 Overview of Hybrid Architectures

Our primary objective is to enhance EEG signal classification by exploring hy-
brid deep learning architectures that combine spatial, temporal, and topologi-
cal features. Recent surveys have highlighted the growing interest in combining
graph-based and sequence-based models to better capture EEG dynamics [11,
3]. We designed two novel pipelines—GNN-Transformer-FC and GCN-CNN-
Transformer—that extend prior work [28] and are optimized for the spatial-
temporal structure of EEG data. Both architectures aim to reduce noise sen-
sitivity while improving representation capacity by separating spatial structure
from temporal information processing.

3.2 Model 1: GNN + Transformer + FC Layers

Figure 1 illustrates our first model architecture. Raw EEG time series are first
transformed into graph structures based on inter-channel similarity and spatial
adjacency. Each EEG trial is represented as a sequence of graph snapshots over
time, where each graph node corresponds to an EEG channel and edges encode
either physical proximity or mutual information.

These graphs are processed by a three-layer Graph Neural Network (GNN)
based on Graph Attention Networks (GAT), which generates node embeddings
that encode spatial relationships across electrodes. The node embeddings at each
time step are then stacked into a token matrix and passed into a Transformer
encoder block comprising two layers with 4 attention heads and feed-forward
layers of size 512. This module captures temporal patterns across the entire trial
window.
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The resulting embeddings are flattened and aggregated via global average
pooling, followed by two fully connected layers for final classification. Dropout
(0.3) is applied before the classifier to prevent overfitting.

Fig. 1. GNN + Transformer + FC Layers: A spatial-temporal hybrid model for EEG
classification.

This modular structure supports interpretability and adaptability to other
EEG tasks. The decoupling of spatial and temporal modeling also allows for
task-specific tuning in future extensions.

3.3 Model 2: GCN + CNN + Transformer

The second architecture, shown in Figure 2, enhances the spatial encoding stage
with convolutional operations. We begin with a two-layer Graph Convolutional
Network (GCN) to embed the EEG graph structure derived from the 129 chan-
nels. The output is reshaped into a 2D tensor of shape (C, T ) where C is the
number of spatial channels and T is the number of time steps.

This tensor is processed by two stacked 2D convolutional layers (kernel size
= 3, stride = 1), each followed by Batch Normalization and ReLU activation.
These layers extract localized temporal and spatial features while reducing noise.

The resulting feature map is tokenized into non-overlapping patches (size
C×P ) and fed into a Transformer encoder consisting of two layers (4 heads, FF
size = 512). Positional encoding is added to preserve temporal order. The final
embedding is flattened and passed through a classifier with two fully connected
layers.

This hybrid architecture balances the strength of CNNs in capturing local
spatial-temporal dynamics with the ability of transformers to integrate global
context. Inspired by CNN-transformer hybrids in computer vision [7], this design
enables robust learning even under limited data conditions.

3.4 Dataset and Preprocessing

We trained and evaluated our models on the EEGEyeNet dataset [8], which
contains EEG time-series data recorded during eye-gaze tracking tasks. Each
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Fig. 2. GCN + CNN + Transformer: A layered architecture combining topological,
spatial, and temporal processing.

instance is labeled according to gaze direction, with data sampled at 256 Hz
across 129 scalp electrodes following the 10-5 system.

We applied standard EEG preprocessing: z-score normalization per channel,
bandpass filtering (1–40 Hz), and segmentation into fixed-length windows of 1
second (256 time steps). To construct EEG graphs, we used either Euclidean
distance between electrode positions or mutual information between channel
pairs [28]. Adjacency matrices were normalized using symmetric normalization.

3.5 Training Details

All models were implemented using PyTorch. We used the Adam optimizer with
an initial learning rate of 0.001 and weight decay of 1× 10−5. Categorical cross-
entropy was used as the loss function. Batch size was set to 64, and all models
were trained for 100 epochs with early stopping based on validation accuracy
(patience = 10).

Dropout (0.3) was applied to transformer and FC layers. All experiments were
conducted on a single NVIDIA A100 GPU. Training time per model averaged
2 hours. All code and pretrained models will be released upon publication for
reproducibility.

4 Results

We evaluated the proposed models on the EEGEyeNet dataset [8], using the
Euclidean distance between predicted and actual gaze positions as the primary
evaluation metric. Table 1 reports the average prediction error (in pixels) and
the standard deviation across five runs.

Our proposed CNN-GViT hybrid model achieved the lowest mean dis-
tance error (61.30± 1.06 pixels), outperforming all baselines. This suggests that
combining CNN layers for spatial feature extraction with transformer blocks for
global temporal attention yields a more accurate representation of EEG signals
for gaze estimation tasks.

4.1 Baseline Models

– CNN: A standard 1D convolutional neural network for learning spatial pat-
terns across EEG channels.
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– Transformer (Vanilla): A transformer encoder with sinusoidal positional
encodings to model temporal dependencies.

– CNN-GRU: A hybrid CNN model followed by a GRU layer, combining
local feature extraction and sequential modeling.

– GViT: Generative Vision Transformer adapted for EEG signals, following
the approach by Yang et al. [28].

– CNN-GViT (Ours): The proposed hybrid model that integrates convolu-
tional front-ends with a GViT back-end.

4.2 Performance Comparison

Table 1. Root Mean Squared Error (RMSE) in millimeters on EEGEyeNet dataset.
Lower is better. Mean and standard deviation over five runs.

Model RMSE (mm) Std Dev (mm)

CNN 72.20 1.34
Transformer (Vanilla) 64.35 1.47
CNN-GRU 63.05 1.24
EEGViT [28] 55.4 1.18
CNN-GViT (Ours) 54.3 0.66

These results validate the advantage of architectural fusion: convolutional
layers improve the extraction of localized EEG features, while transformer-based
attention enhances modeling of long-range dependencies. The CNN-GViT hybrid
model shows consistent improvement across runs, indicating its robustness for
real-time eye-gaze decoding tasks from EEG signals.

5 Discussion

This study set out to explore two main research questions: (RQ1) Which machine
learning architectures perform best on EEG-based visual stimulus classification
tasks? (RQ2) How do hybrid CNN-transformer architectures compare to stan-
dalone deep learning models?

Our findings provide compelling evidence for both research questions. As
shown in Table 1, the hybrid CNN-transformer model achieved the best RMSEE
(54.3±0.66), outperforming both the baseline CNN and transformer-only models.
This performance boost suggests that integrating convolutional layers—effective
at extracting local spatial features—with transformer-based modules—designed
for modeling global dependencies—leads to a richer representation of EEG sig-
nals. These results echo trends from previous EEG modeling studies [11, 3, 6]
and extend the pipeline proposed by Yang et al. [28] with clearer performance
advantages. Our approach also resonates with recent innovations in transformer
refinement, such as Yi et al.’s adaptive spatial attention [29] and Li et al.’s
temporal masking strategies for noise suppression [12].
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5.1 Model Design Implications

The hybrid architecture we propose (Figure 2) leverages CNN layers to prepro-
cess and spatially condense EEG signals before feeding them into transformer
blocks for global attention modeling. This strategy mitigates known limitations
of applying vanilla transformers directly to raw EEG signals, which are often
noisy and low-dimensional [1]. The overall pipeline, illustrated in Figure 1, offers
a modular and interpretable approach for end-to-end classification.

Our results validate the design intuition that CNNs are well-suited for spatial
locality preservation, while transformers offer enhanced capacity for capturing
temporal and inter-channel dependencies. This hybridization not only improves
accuracy but also maintains a computational profile suitable for real-time or
low-latency BCI applications. Such design is increasingly recognized as a ro-
bust and flexible solution across diverse EEG decoding tasks [2, 5]. Furthermore,
our findings are consistent with the multi-modal learning framework by Qu et
al. [19], which supports integrating EEG with auxiliary modalities for improved
generalization and interpretability.

5.2 Limitations

Despite these promising results, several limitations should be acknowledged.
First, the current study was restricted to a single benchmark dataset (EEGEyeNet [8]),
which limits the external validity of our findings. Second, while performance
gains were consistent across trials, they were modest in absolute magnitude.
Third, we did not conduct a full ablation study, which would have provided
deeper insight into the individual contributions of CNN and transformer com-
ponents.

5.3 Future Directions

Future research should expand model validation across multiple EEG datasets,
including those featuring diverse tasks or subject populations. Investigating
subject-transfer learning and domain adaptation remains an open challenge
in EEG decoding. Moreover, self-supervised learning, contrastive learning, and
transfer learning could further enhance model generalizability [11, 3, 6, 24, 28, 25,
9, 14, 18, 4, 30, 16, 26, 22, 20, 21, 23, 17]. Building on recent advances in attention
tuning [29], temporal refinement [12], and multi-modal learning [19], future hy-
brid architectures may further benefit from adaptive masking techniques, multi-
task training regimes, and personalized modeling for real-world BCI deployment.

6 Conclusion

This study presents a comparative evaluation of baseline and hybrid deep learn-
ing models for EEG-based gaze prediction, focusing on spatial-temporal feature
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extraction. Our results show that the proposed hybrid CNN-Transformer archi-
tecture outperforms standalone CNN, GRU, and transformer models by achiev-
ing the lowest gaze prediction error on the EEGEyeNet dataset. This demon-
strates the effectiveness of combining convolutional layers for localized spatial
filtering with transformer-based attention mechanisms for capturing global tem-
poral dependencies in EEG signals.

Beyond performance improvements, the hybrid model offers architectural
flexibility and robustness suitable for real-time EEG decoding tasks. While this
work centers on eye-gaze estimation, the design principles introduced here—graph-
based preprocessing, CNN encoding, and temporal attention—may generalize to
other neurophysiological and sensor-based time series applications.

By highlighting the benefit of multi-stage, modular architectures for noisy
biosignals, this study contributes to the growing body of research advancing deep
learning in neuroinformatics, brain-computer interfaces, and broader human-
centered computing domains.
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