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Abstract. Transformer-based deep learning models have rapidly gained
traction in electroencephalography (EEG) research due to their capac-
ity for modeling long-range temporal dependencies and spatial patterns.
This systematic review surveys 201 papers published between 2019 and
2024, with a focus on transformer and hybrid transformer architectures
for EEG signal decoding across tasks such as emotion recognition, motor
imagery, and attention classification. We categorize key model innova-
tions, including spatial-temporal attention mechanisms, CNN-transformer
hybrids, and neural architecture search techniques. Emerging trends high-
light the dominance of hybrid models and increasing exploration of pre-
trained backbones. We also identify methodological gaps in generaliza-
tion, interpretability, and task-specific benchmarking. To guide future
work, we synthesize recommended models and review papers, and pro-
pose directions for quantitative meta-analysis and open-source resource
development.
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1 Introduction

Transformer-based deep learning architectures have rapidly gained traction in
the field of electroencephalography (EEG) signal analysis, offering novel capabil-
ities for decoding complex brain dynamics. Unlike traditional machine learning
models, transformer architectures can model long-range temporal dependencies
and multi-channel interactions more effectively—properties particularly relevant
for EEG, which is characterized by noisy, non-stationary signals with complex
spatial-temporal structure.

While early transformer applications focused on natural language process-
ing, recent advances have extended their use to physiological signal domains, in-
cluding emotion recognition, cognitive workload estimation, motor imagery, and
attention detection. As this research area grows, it becomes increasingly impor-
tant to systematically review the methods, tasks, and innovations in transformer-
based EEG research to guide future developments and identify promising trends.

To this end, our paper aims to provide a focused systematic review of transformer-
based models for EEG decoding, using the PRISMA framework for transparency
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and reproducibility. We emphasize review and analysis of methodological innova-
tions—particularly in model design, pre-processing strategies, and the diversity
of application tasks.

Our research questions are as follows:

RQ1. What are the dominant methodological trends in transformer-based EEG
decoding, as reflected in review papers published between 2019 and 2024?

RQ2. How do different transformer model variants adapt to specific EEG decoding
tasks such as classification, prediction, and signal reconstruction?

We conducted a comprehensive search across four major platforms—PubMed,
Web of Science, Google Scholar, and arXiv.org—selected based on their broad
coverage of biomedical, computer science, and preprint literature. While other
databases like IEEE Xplore, Semantic Scholar, or Scopus also contain relevant
studies, our chosen sources offered sufficient depth and overlap for our targeted
review scope.

Our contributions are threefold:

1. We present a detailed taxonomy of transformer-based EEG models based on
architecture, task domain, and data preprocessing methods.

2. We summarize methodological innovations and report trends across various
application areas, including emotion recognition, BCI control, and neurolog-
ical diagnosis.

3. We identify current limitations and propose future research directions based
on gaps observed in the reviewed literature.

2 Related Work

2.1 Classical Approaches to EEG Signal Classification

Traditional machine learning approaches for EEG signal classification have relied
on hand-crafted features combined with shallow classifiers such as support vector
machines (SVMs), k-nearest neighbors (k-NN), and linear discriminant analysis
(LDA). These methods typically operate on frequency or time-frequency features
extracted using Fourier or wavelet transforms. While effective for small-scale
problems, these models often struggle with generalization due to noise, inter-
subject variability, and limited data [9, 30, 34, 36, 37].

2.2 Deep Learning for EEG: CNNs and RNNs

With the advent of deep learning, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) have shown significant promise in modeling
the spatial and temporal structure of EEG data. CNNs excel at extracting spa-
tial features across electrode locations, while RNNs and gated recurrent units
(GRUs) capture sequential dependencies across time. Numerous studies have
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proposed hybrid CNN-RNN architectures to leverage the strengths of both mod-
ules, particularly in motor imagery and visual stimulus tasks [19, 9, 15, 33, 35, 43,
52].

Despite their advantages, CNNs are typically limited by their local receptive
fields, and RNNs can struggle with long-range dependencies and training ineffi-
ciencies. These limitations have paved the way for the adoption of transformer-
based models in EEG research.

2.3 Transformers and Hybrid Models for EEG

Transformer architectures, originally designed for natural language processing,
have recently gained traction in EEG signal analysis due to their capability
to model long-range temporal dependencies. Early transformer applications to
EEG adopted vanilla encoder designs [39, 18, 31, 29, 12, 48, 26], often with minor
modifications to positional encoding.

Recent works have adapted transformers to the specific challenges of EEG
signals by incorporating spatial information, temporal masking, or frequency-
aware attention mechanisms. Notably, Vafaei et al. [41] provide a taxonomy
of such adaptations, including cross-modal attention and spatio-spectral atten-
tion modules. Li et al. [21] introduced a temporal masking strategy to suppress
irrelevant EEG segments, while Yi et al. [48] proposed adaptive attention mech-
anisms to improve spatial filtering. Delvigne et al. [10] explore the effects of
spatio-temporal transformer depth on attention estimation tasks.

Hybrid models that combine CNN or GCN modules with transformers have
become increasingly popular due to their ability to extract local spatial fea-
tures and model global temporal relationships. These include CNN-Transformer
pipelines and more recent graph-based transformer hybrids that explicitly incor-
porate topological electrode relationships [47, 2, 13, 21, 17, 32]. Pan et al. [27] pro-
posed a manifold attention mechanism tailored for EEG spatial manifolds, out-
performing baseline transformer models on emotion and motor decoding tasks.
Li et al. [18] and Abibullaev et al. [1] also emphasize hybrid models for EEG
decoding. Sharma et al. [38] introduce a 4D Swin Transformer architecture for
EEG-based emotion classification. Xie et al. [45] propose a task-specific trans-
former architecture optimized for motor imagery EEG decoding. Liu et al. [22]
develop a transformer-CNN model that fuses spatial and temporal cues. Chen
et al. [7] extend Swin Transformers for high-dimensional spatio-temporal EEG
representation. Li et al. [20] propose Dual-TSST, a dual-branch transformer
architecture integrating temporal, spectral, and spatial attention. Additional in-
novations include Arjun et al. [3] introducing ViT variants with spatial feature
maps, Lu et al. [24] proposing a bi-branch transformer architecture for emotion
recognition, and Ding et al. [11] designing a cross-subject transformer framework.
Patel et al. [28] leverage hierarchical spatial attention, while Cheng et al. [8] and
Ghous et al. [14] explore generalization via neural architecture search and fine-
tuning. Bai et al. [4] introduce channel-shifted transformers to address EEG
inter-subject variability. Zhao et al. [50] propose CTNet, which enhances cross-
subject emotion recognition via spatial-spectral contrastive learning. Zhang et
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al. [49] introduce a local-global transformer fusion framework to preserve both
detailed and contextual cues in EEG decoding. Liu et al. [23] present EMPT,
which combines multi-branch encoding with temporal priors for cross-session ro-
bustness. Zhao et al. [51] build a multi-domain transformer that unifies spatial,
temporal, and frequency modules with cross-modal attention. Chen et al. [6]
propose a three-branch convolutional transformer model that improves general-
ization for motor imagery tasks.

Recent models such as STAnet [40] and spatiotemporal gated graph trans-
formers [46] extend transformer architectures with task-specific attention mech-
anisms for auditory and emotional EEG decoding, respectively. Chang et al. [5]
further explores spatiotemporal attention modules for robust EEG modeling
across multiple domains. Ma et al. [25] integrate attention into CNNs to bet-
ter capture temporal dependencies for motor imagery decoding, while Wimpff
et al. [44] demonstrate transformer benefits in a neuroergonomics context using
hybrid models.

2.4 Systematic Reviews on EEG Deep Learning Trends

Systematic reviews have played an important role in tracking methodological
progress in EEG-based deep learning. Prior reviews have covered topics such
as emotion recognition, motor imagery, and attention decoding [9, 19]. These
works highlight the growing interest in transformer-based models post-2020 and
call for a more principled understanding of how different architectures handle
spatial-temporal EEG patterns.

Among recent surveys, Abibullaev et al. [1] provide a comprehensive review of
transformer applications in EEG-based BCI systems, highlighting architecture
design, challenges, and cross-task generalization. Keutayeva et al. [16] discuss
data constraints and optimization strategies for transformer-based EEG models.
Vafaei et al. [41] categorize transformer variants across multiple EEG tasks,
underscoring their growing dominance in the literature. These reviews form the
foundation of our recommended readings and are synthesized in Section 2.5.

2.5 Key Recommended Reviews

Based on a comprehensive filtering process, we identified seven high-quality re-
view and experimental studies that exemplify the methodological diversity and
innovation in transformer-based EEG research. These include both foundational
reviews and cutting-edge experimental designs.

Abibullaev et al. [1] highlight the evolution of transformer architectures and
the importance of spatio-temporal attention in BCI design. Vafaei et al. [41]
provide a structured classification of EEG-specific transformer variants. Keu-
tayeva et al. [16] detail the impact of data size and preprocessing on transformer
stability.

Song et al. [39], Li et al. [18], and Pan et al. [27] present representative archi-
tectures and benchmarking results, illustrating performance benefits from hybrid
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modules or manifold-aware attention. Wang et al. [42] propose a universal pre-
trained model (EEGPT) that generalizes across multiple EEG datasets, pointing
toward future directions in transfer learning and EEG foundation models.

3 Methods

This systematic review follows the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines to ensure transparency and
replicability. The goal was to identify, filter, and synthesize review papers that
examined the use of deep learning, particularly transformer-based and hybrid
architectures, for EEG signal analysis.

3.1 Search Strategy and Data Sources

We conducted a structured literature search across four major databases: Google
Scholar, arXiv, PubMed, and IEEE Xplore. Boolean keyword combinations such
as “transformer EEG review”, “transformer EEG”, and “deep learning EEG sur-
vey” were used to identify relevant literature published between 2019 and 2024.
No filters were applied to restrict the search by task type, publication venue, or
EEG application.

3.2 Inclusion and Exclusion Criteria

The selection criteria were defined as follows:

– Inclusion: English-language, peer-reviewed review or survey papers focused
on EEG signal processing using deep learning methods.

– Exclusion: Non-review papers (e.g., primary experiments), conference ab-
stracts without full text, and reviews not explicitly focusing on deep learning
techniques or EEG signals.

From an initial pool of 241 search results, we applied the above criteria and
excluded duplicates, resulting in 88 review papers for full-text analysis.

3.3 Data Extraction

From each included paper, we manually extracted information on the following
attributes:

– Model types: transformer, CNN, RNN, hybrid, or other architectures.
– EEG tasks: such as motor imagery, attention decoding, P300 detection,

and emotion recognition.
– Datasets: including SEED, DEAP, BCI Competition datasets, and other

benchmark corpora.
– Publication metadata: such as year, venue, and citation metrics.

We did not conduct qualitative coding or subgroup meta-analysis at this
stage, but we summarize trends at a high level in the Results and Discussion
sections.
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Fig. 1. PRISMA diagram outlining the review selection process.

3.4 Study Selection Workflow

Figure 1 illustrates the study selection process, following PRISMA guidelines.

4 Results

This section summarizes methodological trends from 88 EEG deep learning re-
view papers, with a particular focus on transformer and hybrid model applica-
tions. We highlight model categories, performance outcomes, and annual publi-
cation growth.
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4.1 Model Categories and Trends

Table 1 summarizes model categories used in the reviewed studies. Transformer-
based approaches have become increasingly dominant, followed by traditional
CNNs and CNN-transformer hybrids.

Table 1. Summary of model types in 88 reviewed papers (2019–2024)

Model Type Count Examples Tasks/Datasets

CNN 60 [18, 9] ERP, Emotion (DEAP, SEED)
RNN (LSTM/GRU) 20 [48, 15] MI, P300 (DREAMER, SEED)
Transformer 88 [39, 1, 41] P300, Attn, Emotion (TUH, SEED-IV)
CNN-Transformer 18 [27, 18] Multimodal, ERP (SEED, EEGNet-256)
Other Hybrids (e.g., GNN) 12 [47, 16] Sleep, Emotion (PhysioNet, BCI-III)

4.2 Performance Comparison

Table 2 shows selected performance metrics reported in key studies. Transformer
and CNN-transformer models generally achieve higher accuracies than tradi-
tional architectures.

Table 2. Accuracy metrics from selected representative EEG decoding studies

Study Model Task Dataset Accuracy (%)

Yi et al. (2022) Transformer Visual decoding TUH 85.3
Li et al. (2024) Transformer Emotion recog. SEED 89.1
Qu et al. (2024) CNN-Transformer Multimodal EEG SEED-IV 90.5
Zhou et al. (2023) CNN ERP classification DEAP 81.0
Dou et al. (2022) GRU P300 detection SEED 78.2

4.3 Publication Trends

Figure 2 displays the annual growth of EEG + transformer deep learning review
papers. Research activity significantly increased post-2021, reflecting a growing
interest in transformer architectures.

4.4 Recommended Papers

Among the 88 reviewed papers, we identified seven as particularly influential
due to their methodological clarity, coverage breadth, and impact. These are
summarized below:
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Fig. 2. Annual publication count for EEG + transformer reviews (2019–2024, n = 88)

– Abibullaev et al. (2023) [1]: Broad review of transformer use in EEG-
based BCIs.

– Vafaei et al. (2025) [41]: Taxonomy of transformer variants for EEG de-
coding tasks.

– Keutayeva et al. (2024) [16]: Insights into data preprocessing and training
constraints.

– Song et al. (2021) [39]: Early architecture taxonomy and benchmark ex-
periments.

– Wang et al. (2024) [42]: EEGPT—a general-purpose transformer for EEG
representation.

– Li et al. (2020) [18]: CNN-attention models foundational to hybrid EEG
transformers.

– Pan et al. (2022) [27]: Manifold attention network bridging graph and
attention paradigms.

These serve as key references for researchers exploring the intersection of
EEG analysis and modern deep learning frameworks.

5 Discussion

This systematic review uncovers key methodological and conceptual trends in
the application of transformer-based deep learning to EEG signal analysis. The
increasing adoption of transformer models—particularly in hybrid configura-
tions—demonstrates their superior ability to capture long-range temporal depen-
dencies and integrate spatial-temporal information, outperforming traditional
CNN and RNN approaches.

5.1 Model Architecture Trends

Our findings highlight a strong shift toward hybrid architectures that integrate
CNNs or GCNs with transformer backbones. These combinations leverage local
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spatial filtering from convolutional layers and global sequence modeling from
attention mechanisms. In benchmark tasks such as emotion recognition, mo-
tor imagery, and ERP decoding, such hybrid models consistently report higher
accuracy and improved generalization.

A notable yet underexplored trend is the emergence of pretrained trans-
former backbones. Although still in its infancy within EEG research, the use
of pretraining shows potential for accelerating convergence and boosting perfor-
mance—especially when labeled data is limited. As larger EEG datasets become
publicly available and domain-specific pretraining techniques mature, we antic-
ipate greater use of transfer learning and EEG-specific foundation models.

Despite performance improvements, several architectural challenges remain.
Interpretability, computational efficiency, and robustness across subjects and
datasets are still insufficiently addressed in many transformer variants. Address-
ing these limitations will be critical for transitioning EEG-based models from
experimental to clinical and consumer applications.

5.2 Implications for Researchers and Practitioners

The surge in transformer-based EEG studies since 2021 coincides with broader
accessibility to high-performance computing and open-source deep learning frame-
works (e.g., PyTorch, Hugging Face). These developments empower interdisci-
plinary researchers—including those in psychology, neuroscience, and biomedical
engineering—to experiment with sophisticated neural models without deep AI
expertise.

For practitioners building EEG-based brain-computer interfaces (BCIs), our
review suggests prioritizing hybrid transformer models, especially for applica-
tions that require temporal focus or spatial filtering. Attention mechanisms offer
added value in tasks such as emotion classification, mental fatigue tracking, and
cognitive workload assessment, where signal variability and noise complicate tra-
ditional decoding.

5.3 Limitations

This review focused on peer-reviewed, English-language papers published be-
tween 2019 and 2024, sourced from four major academic databases. While we
aimed for comprehensive coverage, several limitations remain. We did not con-
duct subgroup analyses by specific EEG task type (e.g., motor vs. emotion),
nor did we quantitatively synthesize performance metrics across studies. In ad-
dition, we excluded gray literature, preprints, and primary experimental studies
that lacked detailed architecture descriptions. These exclusions may limit the
generalizability of our findings and overlook emerging trends in real-time BCI
deployment.

5.4 Future Work

To extend the scope and impact of this review, we propose the following future
directions:
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– Task-specific meta-analysis: Categorize and compare model performance
across EEG task domains (e.g., motor imagery, attention decoding, emotion
recognition) to reveal architecture-task alignments.

– Quantitative synthesis: Use meta-analysis tools to aggregate and stan-
dardize performance metrics (e.g., accuracy, F1-score) across studies for
stronger statistical conclusions.

– Mechanistic dissection of transformers: Analyze how architectural com-
ponents—such as attention heads, temporal masking, or positional encod-
ing—contribute to EEG decoding across datasets.

– Open-source repository: Launch a curated, searchable database that cat-
alogs reviewed models by task, dataset, architecture type, and reported per-
formance to foster reproducibility and community benchmarking.

By addressing these goals, future work can accelerate the transition from
research prototypes to reliable EEG-BCI systems and lay the groundwork for
standardized evaluation protocols.

Fig. 3. Planned directions for expanding this review.

6 Conclusion

This systematic review highlights the emergence and rapid evolution of transformer-
based and hybrid deep learning models in EEG signal analysis. Compared to tra-
ditional architectures like CNNs and RNNs, these newer models offer improved
performance across a variety of EEG decoding tasks by better capturing both
spatial and temporal dependencies.

Our findings emphasize a clear trend toward architectural innovation—especially
in combining transformers with CNN or GCN modules—and increased use of
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pre-trained models and attention mechanisms. These shifts point to new re-
search directions focused on model interpretability, task-specific customization,
and generalization across diverse EEG datasets.

By consolidating evidence from recent review papers, this work offers a foun-
dational overview for researchers aiming to understand the state of transformer
models in EEG and lays the groundwork for future methodological developments.
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