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Abstract. This systematic review examines the current state of consumer-
grade EEG-controlled directional games, focusing on motor imagery (MI)
techniques. We analyze peer-reviewed studies to identify prevalent signal
processing methods, classification algorithms, performance metrics, and
game design approaches. Our findings reveal that Common Spatial Pat-
terns (CSP) and Linear Discriminant Analysis (LDA) remain dominant
for feature extraction and classification, respectively, due to their com-
putational efficiency in real-time applications. The Unity game engine
emerges as the preferred development platform, and evaluation metrics
show a strong bias toward quantitative measures. Key challenges include
inherent system latency (1–3.5 seconds), limitation on game design, and
a lack of standardized evaluation frameworks. The review highlights crit-
ical gaps in current research, particularly the need for enhanced enter-
tainment value alongside technical optimization, and provides practical
guidelines for developing EEG-controlled games. These insights aim to fa-
cilitate the transition from experimental systems to engaging, consumer-
ready applications while establishing directions for future research in this
evolving interdisciplinary field.
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1 Introduction

1.1 Motivation and Scope

The rapid development of Brain-Computer Interface (BCI) technologies has en-
abled novel forms of human-computer interaction, expanding the possibilities for
user engagement across areas such as gaming and neurorehabilitation. Among
the various BCI paradigms, Electroencephalography (EEG)-based systems have
gained significant attention due to their non-invasiveness, affordability, and in-
creasing commercial accessibility.

One promising application of EEG-based BCI is the use of motor imagery
(MI)—a mental process where users imagine specific physical movements without
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actual execution—to control interactive systems. In recent years, EEG-controlled
games utilizing MI have emerged as an innovative application.

Despite the growing interest in EEG-controlled directional games, the re-
search landscape remains fragmented. Techniques vary widely across studies,
performance metrics lack standardization, and studies ignore user engagement.
This review aims to systematically examine the use of EEG motor imagery with
commercially available EEG headsets for directional game control. The paper
consolidates current methodologies, evaluates performance metrics, and iden-
tifies key trends and challenges, ultimately offering insights and step-by-step
guides for future development in this emerging field.

1.2 Research Questions

To guide the structure of this review, we propose the following research questions:

– RQ1: What are the most commonly used techniques for implementing EEG-
based motor imagery control in directional games?

– RQ2: What performance metrics are typically used to evaluate the effec-
tiveness of real-time EEG-based game control?

– RQ3: What are the current trends, limitations, and open challenges in the
development of such systems using consumer-grade EEG devices?

2 Related Works

2.1 EEG game pipeline

This subsection provides an overview of the core components involved in de-
veloping EEG-based games, outlining the standard pipeline from EEG signal
processing to gameplay integration.

Signal Pre-processing and Feature Extraction EEG recordings are of-
ten contaminated with noise and artifacts caused by environmental noise or
physiological activities like electric current or eye blinks. To address this, com-
monly employed noise and artifact removal techniques include filtering, ICA and
regression-based methods [28, 3]. Following artifact removal, feature extraction
techniques such as CSP, FFT, and wavelet transforms are applied to distill tem-
poral and spatial information from the cleaned EEG signals [28]. A detailed
overview of feature extraction methods is provided in Sharma et al. [71].

Classification Linear Discriminant Analysis (LDA) remains one of the most
widely used classification techniques in EEG-controlled games, primarily due
to its computational efficiency [34]. CNN, LSTM, and ViTs have higher clas-
sification accuracy, but need the support of large training data and are more
computationally intensive than LDA [23, 34, 35, 40, 53, 64–66, 70, 79, 89].
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Game Design and Development Unity dominates as the primary develop-
ment platform for EEG-controlled games, largely due to its flexibility, extensive
documentation, and strong community support. In addition to Unity, some re-
searchers utilize specific code libraries or frameworks to meet particular devel-
opment needs or to accelerate the game development process [60].

Motor imagery-based BCI games generally fall into four main genres: action,
puzzle, adventure, and simulation. Among these, action games are the most
prevalent, accounting for approximately 50% of the studies [24].

Table 1. Abbreviations for the terms used in this paper

Abbrev-
iation

Full Term Abbrev-
iation

Full Term

BCI Brain-Computer Interface BP Band Power

CNN Convolutional Neural Network CSP Common Spatial Patterns

EEG Electroencephalography ERD Event Related Desynchroniza-
tion

ERS Event Related Synchroniza-
tion

FFT Fast Fourier Transform

FIR Finite Impulse Response FPR False Positive Rate

GD Gamer Dedication question-
naire

GEQ Game Experience Question-
naire

ICA Independent Component
Analysis

LDA Linear Discriminant Analysis

LSTM Long Short-Term Memory MI Motor Imagery

NASA-
TLX

NASA Task Load Index NBPW Naive Bayesian Parzen Win-
dow classifier

NM Not Mentioned RLDA Regularized Linear Discrimi-
nant Analysis

SMR Sensorimotor Rhythm SNR Signal-To-Noise Ratio

SSVEP Steady-State Visual Evoked
Potential

SUS System Usability Scale

SVM Support Vector Machine SWNN Small World Neural Network
classifier

TBR Theta/Beta Ratio TPR True Positive Rate

ViT Vision Transformers VMIQ2 Vividness of Movement Im-
agery Questionnaire-2
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2.2 EEG Game Performance Metric

Evaluating the performance of EEG-controlled games requires more than clas-
sification accuracy alone; it also encompasses user experience, sense of control,
and other usability-related factors.

Quantitative Approach Game score and classification accuracy is usually
used to evaluate both user performance and the effectiveness of the classification
algorithm. To further evaluate the user’s level of control, some studies have
proposed specific formulas to quantify how effectively participants interact with
the game. Arpaia et al. introduced the CoinError (CE) metric, which measures
player performance by calculating the average normalized distance between the
avatar and each coin [13].

Qualitative Approach Questionnaires are used to qualitatively evaluate EEG-
controlled game systems, focusing on aspects such as usability, user experience,
cognitive workload, and overall satisfaction. These subjective measures comple-
ment quantitative performance metrics by capturing how users perceive and in-
teract with the system. Among the most commonly used tools are GEQ, NASA-
TLX, and SUS. GEQ is designed specifically to evaluate players’ experiences
during digital gameplay, whil NASA-TLX assesses the perceived workload expe-
rienced by users when interacting with a system. SUS assesss a system’s overall
usability by producing a single score.

3 Methods

We conducted a comprehensive literature review focusing on EEG-controlled
games, particularly directional control games, guided by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. Major
databases searched included Google Scholar, IEEE Xplore, and NYU Library.

3.1 Keywords

To ensure comprehensive coverage, we employed systematic search strategies
using combinations of relevant keywords. The keywords were divided into three
groups as in table 2. The terms within a group are connected with OR operators,
and the groups are connected using AND operators.

3.2 Screening and Selection Criteria

The initial reviewed papers were added to Zotero, which is a reference manager.
Duplicates were automatically detected and removed using Zotero. Then, a series
of criteria were applied to exclude irrelevant papers. Papers were included only
if they met all of the following Selection Criteria.
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– Format: Written in English and published in peer-reviewed scientific jour-
nals or conferences.

– Publication Time Frame: We included papers from 2015 onwards to cap-
ture the most recent advancements.

Fig. 1. Selection process for the papers

Table 2. Grouped keywords for structured literature search strategy.

Paradigm Game Paper Type

EEG Motor Imagery Game Review

Realtime EEG MI Video Game Experiment

Realtime EEG-controlled Virtual Reality Game Survey

EEG directional control Game Performance Metric Classification

Game Performance Evalua-
tion
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– Directional Control Focus: Papers must specifically address MI EEG-
controlled directional games or techniques directly applicable to directional
control.

– Application Domain: Preference was given to studies focusing on real-time
interactive applications, particularly gaming, rather than purely clinical or
rehabilitative contexts.

– Technical Depth: Papers must discuss EEG signal processing, motor im-
agery techniques, or the application of deep learning methods for control
tasks.

3.3 Information Extraction

To systematically analyze the current state of EEG-controlled directional games
using motor imagery and consumer-grade devices, we conducted a structured
data extraction process from 17 selected peer-reviewed papers. The information
extracted was designed to comprehensively address all three research questions.
We focused on capturing a broad but consistent set of features from each study
that could collectively inform our understanding of the techniques used, the
performance metrics applied, and the overall challenges and trends in the field.

The following key information was extracted from each eligible paper:

1. Signal Processing Techniques: This includes methods used for EEG sig-
nal preprocessing and feature extraction.

2. Classification Methods: The algorithms used to classify the extracted
features into directional commands.

3. Classification Accuracy: Reported performance in terms of classification
accuracy for the directional control task.

4. Mental Tasks: The specific types of motor imagery tasks employed in the
study, such as imagined left-hand or right-hand movements.

5. Game Content: A description of the game used in the study.
6. Performance Metrics: Both quantitative and qualitative metrics used to

evaluate game performance and user experience.
7. Average Game Score: The average scores achieved by participants in the

game. This provides a practical measure of system usability and player per-
formance beyond classification accuracy.

8. Latency: The time window or sliding window size used for real-time classi-
fication.

9. Game Engine: The software framework or platform used to develop the
EEG-controlled game. Understanding the development environment helps
evaluate the system’s scalability and integration potential.

All extracted information was recorded in a structured Microsoft Excel spread-
sheet. The data were further synthesized into tables and visualized through fig-
ures. Tables were written in LaTeX format, while figures were generated using
the Pyplot library.
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4 Results

A total of 279 papers were found that are related to EEG motor imagery con-
trolled game. 20 duplicate papers were removed, and 175 papers were exlucded
because they did not fit the selection criteria. 84 papers were included in this
review, and 17 of them were reviewed and used in statistics. The full table of
collected data is included in the appendix section.

4.1 EEG Signal Processing Techniques

Table 3 summarizes key aspects of EEG signal processing in gaming pipelines, in-
cluding pre-processing methods, feature extraction and classification techniques,
mental tasks, and achieved accuracy. Figures 2 and 3 display the adoption fre-
quency of different feature extraction and classification methods across studies.
The results show that Common Spatial Patterns was the dominant feature ex-
traction method (12/17 studies), while Linear Discriminant Analysis was the
most prevalent classification technique (11/17 studies).

4.2 Game Performance Metrics and Game Score Analysis

Table 4 provides a comprehensive overview of game content, performance eval-
uation metrics (both quantitative and qualitative), and corresponding average
game scores (expressed as percentages) across studies. The scoring methodology
varies between studies, with some employing task-specific metrics like coins col-
lected while others utilize classification accuracy. Figure 6 illustrates the distribu-
tion of studies employing quantitative versus qualitative assessment approaches.
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Feature Extraction Techniques
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Fig. 2. Number of papers that used each feature extraction technique
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Table 3. Summary of signal pre-processing methods, feature extraction methods, clas-
sification techniques, mental tasks, and reported accuracies in Reviewed Studies

Paper Signal Pre-
processing

Feature
Extrac-
tion

Classifier Mental Task Accuracy

[12] bandpass fil-
ter

CSP LDA left/right hand, and
no MI

None

[88] bandpass fil-
ter

CSP LDA left/right hand 70%

[39] power fre-
quency fil-
tering, EOG
extraction,
and baseline
correction of
EEG

ICA, CSP SWNN left/right hand,
feet, tongue, sin-
gle/double blink

None

[62] bandpass fil-
ter

None LDA left/right hand, blink None

[13] bandpass fil-
ter

CSP LDA left/right hand None

[63] bandpass fil-
ter

None MLP left/right hand, blink None

[84] None CSP LDA left/right hand 63.19%

[33] a self-
designed
spatial filter,
bandpass
filter

None LDA left/right hand 65%

[41] None CSP LDA left/right hand, both
feet, tongue

70%

[50] python and
MNE library
AND band-
pass filter

FIR LSTM and
CNN

left/right hand, head
movement

72% and 70%

[11] Filter Bank
(FB) com-
posed by
an array of
bandpass
filters

CSP NBPW left/right hand 74%

[75] bandpass fil-
ter

FFT, CSP LDA left/right hand 58.3%

[76] None FFT, CSP LDA left/right hand None

[20] None ICA SVM left/right hand 76%

[36] bandpass fil-
ter

CSP RLDA left/right hand, feet,
relax

90%

[86] bandpass fil-
ter

CSP LDA left/right
hand+SSVEP

87.01%

[45] None BP, CSP LDA left/right hand None
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Analysis reveals that quantitative performance metrics (e.g., coins collected,
classification accuracy, CoinError) were employed in the majority of studies
(16/17) to evaluate EEG game pipeline efficacy, whereas only 35.3% (6/17) incor-
porated both quantitative and qualitative measures. For qualitative assessment,
while some studies developed custom questionnaires to assess user experience and
system efficiency, most adopted established instruments including SUS, NASA-
TLX, and GEQ.

Notably, two studies reported participant feedback indicating high mental
demands coupled with low physical/temporal demands and frustration levels
[13, 84]. Another investigation employed ERD/ERS and SMR analysis to quan-
tify participant fatigue, demonstrating that demanding motor imagery tasks
increasing fatigue levels subsequently impaired performance through diminished
attention and engagement [76].

4.3 Additional Technical and Development Characteristics

Table 5 summarizes the mental tasks employed for EEG signal acquisition and
the sliding window durations (latency) used for classification. Figure 3 illustrates
the distribution of game engines adopted in EEG-controlled game development.

The analysis reveals that Unity was the predominant choice, utilized in 83.3%
of the reviewed studies, while Unreal Engine and Qt Creator were employed
in only 8.3% and 8.3% of studies, respectively. Notably, one study highlighted
Unity’s adoption despite the authors’ lack of prior game development experience,
citing its user-friendly development environment as a key factor [33].

Concerning mental tasks, all studies incorporated left- and right-hand mo-
tor imagery as primary control mechanisms. Some extended functionality by

LDA RLDA LSTM CNN NBPW SWNN
Classification Techniques
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Fig. 3. Number of papers that used each classification technique
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Table 4. Summary of the game content, performance metrics, and average game scores
of the reviewed studies

Paper Game Quantitative
Performance
Metric

Qualitative Per-
formance Metric

Average
Game Score

[12] Collecting coins in
three lanes

Score, Coin-
Error(CE)

Self designed ques-
tionnaires

32.24%

[88] Keep a ball from
falling off the plat-
form

game score, SMR
and TBR, a formula
for sense of control

None None

[39] 3D Tetris Score, ERD and
ERS

None None

[62] Collecting coins in
three lanes

Score, Coin Clus-
ters Collected, Ac-
curacy

None 65.80%

[13] Collecting coins in
three lanes

CoinError (CE) SUS, NASA-TLX 36.57%

[63] Collecting coins in
three lanes

Score, Coin Clus-
ters Collected, Ac-
curacy

None 59%

[84] Rowing a boat to col-
lect flags

Score VMIQ2, GD, NASA
TLX, GEQ, SUS

None

[33] Collecting fruits on
trees alongside a
path

Accuracy None 65%

[41] Maze Accuracy None 70%

[50] Super Mario game Accuracy None 72% and 70%

[11] Sliding a ball toward
a given target

Accuracy Self designed ques-
tionnaire on a 7-point
Likert scale

74%

[75] using the cued hand
to push a button

Accuracy NASA TLX, a
self-designed ques-
tionnaire

58.30%

[76] Destroying Asteroids Score, Accuracy,
Bit Transfer Rate,
ERD

self designed quetion-
naire on a Likert
scale

67.11%

[20] Choosing from two
objects to place on a
trash bin

Accuracy None 76%

[36] A car racing game Accuracy None 90%

[86] 2D tetris Accuracy, TPR,
FPR

None 87.01%

[45] Rotating shapes to
solve puzzles

None None None
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integrating additional commands (e.g., jumping or rotating), which required al-
ternative imagined movements, such as foot movement, tongue movement, or
blinking. While details on sliding window length were frequently unreported,
studies that did specify this parameter employed durations ranging from 1 to
3.5 seconds.

Neither

5.9%

Both Qualitative
and

Quantitative 35.3%

Quantitative
58.8%

Fig. 4. Percent of papers that used quantitative and/or qualitative performance metric
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5 Discussion

This subsection synthesizes key findings into a framework for constructing an
EEG-controlled directional game system, while addressing current trends and
challenges in EEG-game integration.

Qt Creator

8.3%
Unreal Engine

8.3%

Unity Engine

83.3%

Fig. 6. Percent of studies that used each game engine

Table 5. Mental tasks used and the sliding window length for analyzing EEG signals.

Paper Mental Task Latency
(seconds)

Paper Mental Task Latency
(sec-
onds)

[12] left/right hand,
and no MI

NM [88] left/right hand NM

[39] left/right hand,
feet, tongue, sin-
gle/double blink

1.43 [62] left/right hand,
blink

NM

[13] left/right hand NM [63] left/right hand,
blink

3

[84] left/right hand NM [33] left/right hand NM

[41] left/right hand,
both feet, tongue

NM [50] left/right hand,
head movement

NM

[11] left/right hand 2 [75] left/right hand 3.5

[76] left/right hand Customizable [20] left/right hand NM

[36] left/right hand,
feet, relax

1-2 [86] left/right
hand+SSVEP

2

[45] left/right hand 1
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5.1 General Framework for Developing an EEG-Controlled Game
System

EEG Signal Acquisition The majority of reviewed studies employed commercial
EEG headsets with 4 to 20 electrodes. While higher-density configurations im-
prove signal resolution, they prolonged setup times and increased computational
demands, which may compromise real-time performance.

Signal Processing and Classification For researchers new to EEG, we recommend
adopting Common Spatial Patterns (CSP) for feature extraction and Linear
Discriminant Analysis (LDA) for classification. These methods dominate the
literature due to their computational efficiency and proven efficacy in real-time
motor imagery tasks.

Integration with Game Systems To bridge classified EEG commands with game
controls, two primary approaches emerge:

– Keyboard emulation (e.g., via Python’s pynput.keyboard library)
– Inter-process communication (e.g., socket-based implementations, as demon-

strated by [88])

Game Development Platform Unity Engine is the predominant choice and is par-
ticularly suited for novice developers due to its intuitive, user-friendly interface
and rapid prototyping capabilities for both 2D and 3D games.

5.2 A Guide to Design A Comprehensive EEG Game Performance
Metric

A thorough assessment of the system should encompass both system performance
and user experience, so we recommend using both quantitative and qualitative
performance metrics.

Quantitative Performance Metric Quantitatively, we recommend researchers
employ the following metrics:

– Classification Accuracy assesses the algorithmic performance of the EEG
signal processing pipeline.

– Game Score can be used as a standardized performance measure. While
the calculation varies across game genres, this metric provides a direct quan-
titative assessment of the system.

– Control Effectiveness Score evaluates the control effectiveness of EEG-
based game control in a more comprehensive way. This metric should in-
corporate game-specific parameters through mathematical formulations. An
example of this is the coin cluster approach in [62] and the CoinError metric
in [12].

For comprehensive quantitative evaluation frameworks, researchers may con-
sult [12, 88, 13].
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Qualitative Performance Metric Qualitative performance metrics should
be used to evaluate the usability of EEG-controlled game systems and gather
valuable user feedback. These insights are essential for improving both the game
experience and overall system design. Established questionnaires such as the
GEQ, SUS, and NASA-TLX offer comprehensive sets of questions that assess
various aspects of user experience, including engagement, usability, cognitive
workload, and satisfaction. Researchers could refer to [13, 84, 75] for reference on
qualitative performance metrics.

5.3 Trends and Challenges of EEG-Controlled Games

The current state of EEG-controlled games faces several fundamental limita-
tions that impact both design and user experience. First, practical implemen-
tations typically limit the number of distinct mental tasks to 2-4 to maintain
optimal classification accuracy. This limitation, coupled with the predominant
research focus on signal classification rather than player experience and enter-
tainment value, results in systems that function more as experimental platforms
than engaging games. The challenge is particularly acute given that most EEG
researchers lack formal training in game design principles. For theoretical frame-
works on enhancing player engagement, we recommend consulting [61], while
[13] provides a practical example of improved user experience design.

A critical gap in current research is the systematic evaluation of system us-
ability and user experience. As evidenced by our review, few studies incorporate
qualitative metrics alongside quantitative performance measures. We strongly
advocate for comprehensive evaluation frameworks that assess both technical
and human-centered dimensions of EEG gaming systems.

The significant variation in game scores across reviewed studies (Figure 5)
highlights another challenge: unlike classification algorithms that can be uni-
formly assessed through accuracy metrics, game systems lack standardized eval-
uation criteria. This underscores the need for future research to establish quan-
titative benchmarks for game performance assessment.

The inherent latency of EEG signal processing presents a crucial constraint.
Unlike keyboard inputs with sub-millisecond response times, EEG classification
requires signal intervals rather than instantaneous measurements. Our analysis
of Table 5 reveals typical latencies ranging from 1 to 3.5 seconds, making these
systems unsuitable for fast-paced interactions but potentially viable for turn-
based or slow-paced gameplay scenarios.

5.4 Limitation and Future Work

The major limitation is the lack of standardized evaluation methods across stud-
ies. This paper assess performance using in-game scores or task-specific metrics,
which are not comparable enough between games. As a result, it is difficult to
determine which game designs or control methods are most effective. Future re-
search should aim to establish common evaluation criteria that incorporate both



Consumer-Grade EEG Motor Imagery in Game Control: A Review 15

objective performance measures and subjective user experience. This would en-
able meaningful comparisons across studies and help identify best practices in
the development of EEG-controlled games.

6 Conclusion

This systematic review has synthesized current research on EEG-controlled di-
rectional games, highlighting key methodologies, performance metrics, and per-
sistent challenges in the field. Our analysis reveals that while motor imagery-
based systems using CSP and LDA remain dominant for their real-time efficiency,
significant limitations persist—particularly in system latency (1-3.5s), command
diversity (optimally 2-4 classes), and evaluation standardization. Crucially, we
identified a disconnect between technical optimization and entertainment value,
with most studies prioritizing classification accuracy over user experience. To
advance the field, we propose two critical directions for future work: (1) devel-
opment of standardized, multimodal evaluation frameworks that balance quan-
titative performance with qualitative user experience metrics; and (2) improved
game design strategies that leverage EEG’s constraints (e.g., turn-based me-
chanics for latency tolerance). The transition from laboratory prototypes to
consumer-ready applications demands equal attention to technical robustness
and player satisfaction. By addressing these challenges, EEG-controlled games
can evolve beyond research tools into viable entertainment platforms, unlocking
new possibilities for accessible, immersive BCI gaming.
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7 Appendix

Table 6. Summary of Key Statistics from Reviewed Studies

Pap-
er

Nu-
mber
of
Electrod-
es

Signal
Prepro-
cessing

Fea-
ture
Ex-
trac-
tion

Class-
ifier

Accu-
racy

Aver-
age
Game
Score

Quantit-
ative
Perfor-
mance
Metric

Qualitat-
ive
Perfor-
mance
Metric

Mental
Task

Game late-
ncy
(sec)

Game
En-
gine

[12] 8 bandpass
filter

CSP LDA None 32.24% Score,
Coin-
Error(CE)

Self de-
signed
question-
naires

left/right
hand,
and no
MI

Collecting
coins in
three
lanes

NM Unity

[88] 27 bandpass
filter

CSP LDA 70% None game
score,
SMR and
TBR, a
formula
for sense
of control

None left/right
hand

Keep a
ball from
falling
off the
platform

NM Qt
cre-
ator

[39] 40 power
fre-
quency
filtering,
EOG
extrac-
tion, and
baseline
correc-
tion of
EEG

ICA,
CSP

SWNN None None Score,
ERD and
ERS

None left/right
hand,
feet,
tongue,
sin-
gle/double
blink

3D Tetris 1.43 None

[62] 5 bandpass
filter

None LDA None 65.80% Score,
Coin
Clusters
Col-
lected,
Accuracy

None left/right
hand,
blink

Collecting
coins in
three
lanes

NM Unity

[13] 8 bandpass
filter

CSP LDA None 36.57% CE SUS,
NASA-
TLX

left/right
hand

Collecting
coins in
three
lanes

NM Unity

[63] 4 bandpass
filter

None MLP None 59% Score,
Coin
Clusters
Col-
lected,
Accuracy

None left/right
hand,
blink

Collecting
coins in
three
lanes

3 Unity

[84] 8 None CSP LDA 63.19% None Score VMIQ2,
GD,
NASA
TLX,
GEQ,
SUS

left/right
hand

Rowing
a boat
to collect
flags

NM Unity

[?] 8 a self-
designed
spatial
filter +
bandpass
filter

None LDA 65% 65% Accuracy None left/right
hand

Collecting
fruits on
trees
alongside
a path

NM Unity

[41] 16 None CSP LDA 70% 70% Accuracy None left/right
hand,
both
feet,
tongue

Maze NM NM
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Table 7. Table 6 Continued
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mber
of
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cessing
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tion

Class-
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Quantit-
ative
Perfor-
mance
Metric

Qualitat-
ive
Perfor-
mance
Metric

Mental
Task

Game late-
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(sec)

Game
En-
gine

[50] 8 python
and MNE
library,
bandpass
filter

FIR LSTM,
CNN

72%
and
70%

72%
and
70%

Accuracy None left/right
hand,
head
move-
ment

Super
Mario
game

NM None

[11] 3 Filter
Bank
(FB)
com-
posed
by an
array of
bandpass
filters

CSP NBPW 74% 74% Accuracy Self de-
signed
question-
naire on
a 7-point
Likert
scale

left/right
hand

Sliding
a ball
toward
a given
target

2 Unity

[75] 20 bandpass
filter

FFT,
CSP

LDA 58.30% 58.30% Accuracy NASA
TLX,
a self-
designed
question-
naire

left/right
hand

using
the cued
hand to
push a
button

3.5 Untiy

[76] 28 None FFT,
CSP

LDA None 67.11% Score,
Accu-
racy,
BTR,
ERD

self de-
signed
quetion-
naire on
a Likert
scale

left/right
hand

Destroying
Asteroids

cust-
omiz-
able

Unity

[20] 64 None ICA SVM 76% 76% Accuracy None left/right
hand

Choosing
from two
objects
to place
on a
trash bin

NM NM

[36] 32 bandpass
filter

CSP RLDA 90% 90% Accuracy None left/right
hand,
feet,
relax

A car
racing
game

1-2 Unity

[86] 20 bandpass
filter

CSP LDA 87.01% 87.01% Accuracy,
TPR,
FPR

None left/right
hand+SSVEP

2D tetris 2
sec

NM

[45] 9 None BP,
CSP

LDA None None None None left/right
hand

Rotating
shapes
to solve
puzzles

1
sec
win-
dow
ev-
ery
1/16
sec

UE4


