
FlockJS: A Browser-Native Game Engine
Integrating WebGPU and Peer-to-Peer

Networking for Scalable Multiplayer Experiences

Faris Jiwad, Owen Wolff, Omar Barabandi, Laith Najjab, and Xiaodong
Qu[0000−0001−7610−6475]

The George Washington University

Abstract. FlockJS is a lightweight, browser-native game engine that en-
ables scalable, real-time multiplayer gameplay without centralized servers.
By integrating WebGPU for GPU-accelerated rendering and WebAssembly-
backed peer-to-peer networking via WebRTC, FlockJS provides a high-
performance platform for fully in-browser interactive applications. Its
declarative API abstracts low-level graphics and networking logic, allow-
ing developers to build synchronized multiplayer games in under 100 lines
of code. We present the architecture of FlockJS, including a hybrid super-
peer model that reduces latency, and evaluate its performance across
varying peer counts and network conditions. Results show that FlockJS
sustains over 50 FPS with sub-70ms latency in hybrid topologies involv-
ing five peers. Usability feedback from student developers highlights the
API’s clarity and ease of integration, with requests for enhanced debug-
ging support. By merging modern web standards into an extensible and
approachable framework, FlockJS advances not only multiplayer game
development but also serves as a valuable teaching tool for project-based
learning in computer graphics and networking.

Keywords: Peer-to-peer networking · WebGPU · WebAssembly (WASM)
· browser-native game engine · multiplayer game development · hybrid
super-peer topology · real-time rendering · declarative API design

1 Introduction

The rising popularity of browser-based multiplayer games has created a demand
for development tools that are not only high-performance but also accessible to
independent developers and small teams. Traditional multiplayer architectures
often rely on centralized servers, which introduce significant costs, latency bot-
tlenecks, and single points of failure. At the same time, rendering frameworks
such as WebGL, while widely supported, lack the low-level control needed to
unlock modern GPU performance for dynamic, real-time applications.

FlockJS addresses these dual challenges by integrating peer-to-peer net-
working, WebGPU rendering, and WebAssembly (WASM) into a lightweight,
modular game engine optimized for the browser. Peer-to-peer (P2P) networking
enables players to communicate directly with one another without routing all



2 F. Jiwad et al.

interactions through a central server, significantly reducing infrastructure over-
head and latency. WebGPU, a modern graphics API currently being adopted in
major browsers, allows direct access to the GPU for rendering complex visual
scenes with minimal overhead. WebAssembly serves as a bridge between Rust-
based networking logic and high-level JavaScript, enabling seamless integration
between performance-critical components and user-facing APIs.

This paper presents the design, implementation, and evaluation of FlockJS,
a browser-native 2D multiplayer game engine that leverages these technologies
to democratize game development. FlockJS provides an easy-to-use JavaScript
API for game designers while abstracting away the complexity of P2P synchro-
nization and GPU programming. The system supports scalable multiplayer in-
teractions through a hybrid network model using super peers and achieves high-
performance rendering via batched GPU pipelines.

We describe the architectural design of FlockJS, analyze its performance
under varying conditions, and report usability feedback from both developers
and players. Our goal is to demonstrate that real-time, high-fidelity multiplayer
games can be built and run directly in the browser without centralized infras-
tructure, lowering the barrier to entry for aspiring game creators.

2 Related Work

Web-based game development has advanced significantly over the past decade,
driven by improvements in both client-side rendering technologies and real-time
communication protocols. Early browser games relied heavily on HTML5 and
WebGL for rendering, typically paired with centralized client-server architectures
to manage game state. While effective in controlled environments, these setups
impose scalability limits and introduce single points of failure, making them less
suitable for dynamic multiplayer scenarios.

Peer-to-peer communication in browser environments is now primarily en-
abled by WebRTC, which facilitates real-time data exchange between clients
without persistent servers. Several systems have leveraged this capability. For
instance, WebTorrent utilizes WebRTC for decentralized file sharing, while Col-
yseus provides an abstraction layer for multiplayer state management using a
hybrid model that still relies on central session coordination. OpenPix [1] offers
a modular framework for building WebRTC-based multiplayer games, although
it retains dependencies on server orchestration and does not address GPU inte-
gration. Dantas et al. [3] introduced a CRDT-based synchronization scheme for
peer-to-peer games, effectively handling eventual consistency but not rendering
performance. Rodríguez et al. [9] evaluated trade-offs in peer-driven synchro-
nization but focused on backend-optional mobile architectures. GameBeam [6]
further advanced serverless multiplayer design by combining operational trans-
formation with peer-to-peer state exchange, improving fault tolerance and re-
sponsiveness in decentralized game sessions.

In terms of graphics, WebGL has served as the browser’s default GPU in-
terface, providing a basic abstraction layer over low-level rendering operations.



FlockJS: Peer-to-Peer WebGPU Game Engine 3

However, its limitations—such as lack of pipeline control and outdated shader
models—have led to the emergence of WebGPU. As a next-generation API, We-
bGPU offers more explicit access to GPU capabilities, including direct control
over shaders, memory, and pipelines. Chickerur et al. [2] demonstrated that We-
bGPU consistently outperforms WebGL across a range of devices and workloads,
especially those involving complex shader logic. Fransson et al. [4] benchmarked
WebAssembly-WebGPU pipelines, further validating the performance gains of
GPU-native execution over traditional JavaScript-based rendering.

WebAssembly (WASM) has also emerged as a cornerstone of high-performance
browser computation. It allows low-level languages such as C++ and Rust to
be compiled for execution in the browser, offering near-native performance.
Trautwein et al. [10] proposed a modular WASM architecture emphasizing low-
overhead interoperability between host and guest languages—an approach that
aligns with FlockJS, where performance-critical peer-to-peer logic is written in
Rust and exposed to JavaScript through WASM bindings.

While several engines and frameworks address either peer-to-peer networking
or GPU-accelerated rendering, few unify these capabilities into a cohesive model.
FlockJS contributes to this emerging design space by offering an integrated,
browser-native game engine that abstracts both WebGPU and WebRTC through
a declarative JavaScript API. This positions it as a novel platform for building
scalable, low-latency multiplayer games entirely in the browser without backend
infrastructure.

3 Methods

FlockJS is a browser-native game engine that integrates peer-to-peer networking
with GPU-accelerated rendering via WebGPU. It is built with modular Rust and
JavaScript components linked through WebAssembly (WASM). This section out-
lines the system architecture, peer networking model, WebAssembly integration,
and game engine design.

3.1 System Overview

FlockJS separates responsibilities between developers and the engine itself. Fig-
ure 1 shows the full sprite lifecycle, from initialization to rendering, indicating
which tasks are handled by developers and which are automated by the engine.

The engine initializes a WebGPU rendering context, connects to other peers
through WebRTC, and handles sprite rendering and synchronization internally.

3.2 Peer-to-Peer Networking and Super-Peer Election

FlockJS uses WebRTC connections initialized through Matchbox signaling. To
minimize the cost of full mesh topologies, it optionally supports a hybrid model
with a dynamically selected “super-peer” for relaying data. Figure 2 compares
the two models.



4 F. Jiwad et al.

Fig. 1. Flow of sprite rendering and synchronization between peers. Boxes labeled
"Flock" are automatically handled by the engine.

Super-peer selection is based on a peer quality score defined as:

Score(i) = α · Uploadi + β · (1− RTTi)

where α and β are tunable hyperparameters, Uploadi is measured peer band-
width, and RTTi is round-trip time. This allows the system to dynamically
choose peers with better upload capacity and latency to optimize communica-
tion.

3.3 WebAssembly Integration

FlockJS compiles its networking logic from Rust into WebAssembly (WASM) to
enable high-performance peer management in the browser. Compared to tradi-
tional JavaScript, WASM offers significant gains in memory management and
runtime efficiency across major browsers [9]. JavaScript loads and interacts with
the compiled WASM module using bindings such as:

// JavaScript binding to start WebRTC peer server
wasmModule.startServer();
console.log("P2P server started");

This module handles ICE candidate negotiation, session description exchange,
and packet transmission. WASM also buffers networking data for seamless hand-
off to the game logic.

3.4 Game Engine Abstractions and API Design

The engine offers a declarative API that abstracts complex WebGPU and We-
bRTC operations. Developers define scenes and sprite logic through a TypeScript
interface. A simplified usage example:



FlockJS: Peer-to-Peer WebGPU Game Engine 5

Fig. 2. Peer-to-peer network topologies supported by FlockJS: Full mesh (left) and
hybrid architecture with super-peer election (right).

// Game scene definition in FlockJS
const gameScene: Scene = {

id: "demo",
preload: () => loadAssets(),
create: (state) => {

createSprite(state, "avatar", "user-controlled");
wasmModule.startServer();

},
update: async (state) => {

updateLocalPosition(sprite, state);
sendLocalPosition(sprite.position);
receiveRemotePositions(state);
drawSprites(state); // GPU rendering handled here

}
};

3.5 WebGPU Rendering Pipeline

FlockJS builds on top of the low-level WebGPU API to efficiently render 2D
sprite scenes. Internally, the engine manages buffer creation, shader compilation,
and frame submission. Figure 3 shows how scene objects, user inputs, shaders,
and WASM modules interact in the system.

All rendering passes are optimized to reduce draw calls and memory transfers.
Compute shaders can optionally be injected for tasks like animation or predictive
movement.



6 F. Jiwad et al.

Fig. 3. Game engine architecture: left shows developer-accessible API; right shows
system internals using WebGPU and WebAssembly.

3.6 Developer Workflow and Extensibility

FlockJS is designed to facilitate both rapid prototyping and modular extensibil-
ity. Developers interact with the system through a declarative JavaScript API,
enabling them to register multiple scenes, define entity behaviors, and compose
logic with minimal boilerplate. Advanced users can inject custom shaders directly
into the WebGPU pipeline, extend core modules via WebAssembly bindings, or
override default behaviors in the physics and networking subsystems.

This architecture separates low-level platform-specific complexity from user-
facing code, streamlining onboarding for novice developers while preserving full
control for experts. The modular design supports use cases ranging from edu-
cational demos to scalable production-grade multiplayer games. Instructors can
adopt FlockJS for teaching web-based game development, while independent
developers can incrementally replace components to suit their performance or
gameplay requirements.

4 Results

We evaluated FlockJS across two dimensions: system performance under vary-
ing network conditions, and developer usability during real-world prototyping.
The tests were conducted using Chrome 124 and Firefox 125 on Windows and



FlockJS: Peer-to-Peer WebGPU Game Engine 7

macOS devices, over home and campus Wi-Fi networks, with 1–5 browser peers
simultaneously connected.

4.1 Performance Evaluation

We measured average latency and frame rate under different peer loads and
simulated packet delays. Table 1 summarizes the results.

Table 1. Average round-trip latency and frame rate with increasing peer count (Full
Mesh Topology)

Number of Peers Avg Latency (ms) Avg Frame Rate (FPS)

2 45 58
3 55 56
4 75 52
5 110 48

In the default full-mesh configuration, latency increased linearly with the
number of peers due to the O(n2) connection complexity. To mitigate this, we
evaluated the hybrid architecture with super-peer routing (Figure 2). Table 2
shows improved latency under the same conditions.

Table 2. Average latency using hybrid architecture with super-peer (5 peers)

Topology Avg Latency (ms)

Full Mesh 110
Hybrid (1 Super Peer) 62

Rendering performance remained stable across network conditions. GPU
draw time per frame remained under 5ms for scenes with 50+ moving sprites
using compute shaders. Sample frame rendering log:

[GPU] Frame 51: draw_time = 4.82ms, sprites = 56
[GPU] Frame 52: draw_time = 4.77ms, sprites = 58

4.2 Developer Usability

To evaluate the usability of FlockJS from a developer perspective, we conducted
a study with five student teams tasked with prototyping browser-based multi-
player mini-games using the engine. The teams were composed of undergrad-
uate students with varying levels of experience in web development and game



8 F. Jiwad et al.

design. Qualitative feedback was collected through structured surveys and semi-
structured interviews, and responses were thematically analyzed.

Key findings are summarized as follows:

– API Clarity: All teams reported that the declarative API for sprites, scenes,
and peer management was intuitive and required minimal boilerplate. The
abstraction layers were particularly well-received by developers new to We-
bGPU or WebRTC.

– Setup Experience: Integration of WebAssembly modules was seamless
from the users’ perspective. Teams did not need to directly modify or under-
stand Rust code, suggesting that the WASM boundary was well-encapsulated.

– Debugging Challenges: Several teams noted difficulty in debugging real-
time peer state and connection stability, particularly in full mesh mode.
The absence of real-time logging or visual network diagnostics emerged as a
recurring theme in the feedback.

– Documentation and Learning Resources: While basic usage was acces-
sible, most teams requested additional visual examples, video walkthroughs,
and annotated code templates to help bridge the gap between prototype and
production-level usage.

Despite these limitations, all teams successfully implemented core multiplayer
features, such as synchronized sprite movement, scene transitions, and live peer
discovery, in fewer than 100 lines of JavaScript. This suggests that FlockJS offers
a low barrier to entry for real-time multiplayer development in the browser while
maintaining extensibility for more advanced users.

4.3 Limitations Observed

Under high packet loss (simulated at 20%), peer desynchronization occurred due
to the lack of reliable ordering in WebRTC’s unordered data channels. We plan
to incorporate optional reliability layers in future versions.

5 Discussion

The results demonstrate that FlockJS can enable real-time, scalable peer-to-
peer multiplayer experiences with minimal backend infrastructure. By combining
a hybrid networking model with GPU abstraction via WebGPU, the system
achieves a balance between rendering performance and developer accessibility.
This section reflects on the architectural trade-offs, design implications, and
potential directions for future development.

5.1 Architectural Trade-offs

Our evaluation of full mesh and hybrid peer-to-peer models underscores a cen-
tral scalability trade-off. Full mesh architectures ensure direct communication



FlockJS: Peer-to-Peer WebGPU Game Engine 9

between all peers but introduce O(n2) connection complexity, which results in
elevated bandwidth usage and latency as the number of users increases. In con-
trast, the hybrid model elects a single super-peer to relay data, improving scal-
ability while introducing the risk of centralized bottlenecks. This trade-off must
be managed dynamically based on peer performance metrics.

Compared to conventional client-server topologies, FlockJS’s peer-to-peer
architecture reduces server load and can improve responsiveness in small to
medium-scale deployments. Nevertheless, issues such as peer churn, NAT traver-
sal, and firewall restrictions persist. While FlockJS incorporates fallback signal-
ing and lightweight heuristics for routing, integration with robust solutions such
as TURN servers is planned for future iterations.

5.2 Design Insights

A core insight from the development of FlockJS is the advantage of cleanly
separating game logic from low-level rendering and networking primitives. By
offering a high-level, declarative API and delegating computationally intensive
tasks to WebAssembly modules, FlockJS significantly lowers the technical barrier
for developers—particularly students and early-stage prototypers. This modu-
larity not only simplifies onboarding but also fosters rapid experimentation and
iterative design. The effectiveness of declarative paradigms in interactive system
development has been well-documented [11]; FlockJS extends these benefits into
the domain of browser-native, multiplayer game engines.

The engine is also tailored for educational contexts. Recent research on the
integration of generative AI tools in CS education has emphasized the value of
modular, visual, and interactive frameworks in enhancing student understand-
ing [8]. FlockJS complements these trends by enabling hands-on exploration
of real-time systems, distributed networking, and graphics programming—all
within a unified web environment. Moreover, its project-oriented architecture
aligns with pedagogical strategies that promote authentic, portfolio-driven learn-
ing, similar to efforts to embed HCI datasets into undergraduate machine learn-
ing courses [7].

Our experience with WebGPU further illustrates this dual emphasis on per-
formance and accessibility. WebGPU’s low-level control over GPU pipelines en-
ables considerable performance gains in sprite batching and shader execution.
However, its limited browser support and steep learning curve present practi-
cal challenges. FlockJS addresses these by abstracting away complexity through
internally layered APIs, balancing the power of WebGPU with the ease of high-
level scripting.

5.3 Limitations

Despite its strengths, FlockJS exhibits several limitations:

– Packet Reliability: WebRTC’s data channels lack built-in reliability guar-
antees, leading to occasional synchronization errors during packet loss.



10 F. Jiwad et al.

– Debugging Overhead: Real-time debugging of peer state and network la-
tency remains cumbersome, even with extensive logging. Prior work [5] high-
lights the importance of visual, event-driven debugging tools to reduce cogni-
tive load and improve developer comprehension in multiplayer systems—an
area that FlockJS currently lacks.

– Mobile Compatibility: The current implementation is optimized for desk-
top browsers and has not yet been tuned for mobile GPUs or touch-based
input handling.

5.4 Future Work

5.5 Future Work

Future versions of FlockJS may integrate improvements along the following lines:

– Reliable Messaging Layers: Incorporating optional reliability protocols
(e.g., FEC, selective retransmission) over WebRTC could bolster network
robustness.

– Visual Debugging Tools: An interactive in-browser panel for displaying
peer connections, network metrics, and real-time sprite states would aid in
troubleshooting.

– Mobile Optimization: Adapting input handlers and memory usage pat-
terns to support mobile browsers will expand accessibility.

– Modular Physics and CRDTs: Inspired by recent work on composable
multiplayer systems [3], we plan to explore CRDT-based conflict resolution
and modular physics engines to support extensible real-time applications.

– Scene Partitioning: Supporting region-based loading and spatial parti-
tioning will improve scalability for larger maps and multi-region play.

– Educational Tool Extensions: Following the design philosophy of Brain-
Activity1 [12], future iterations of FlockJS may offer educational dashboards
and simplified scripting environments to further support classroom use and
student-led experiments in real-time multiplayer design.

These extensions aim to transition FlockJS from a prototyping and teaching
framework into a general-purpose game engine suitable for indie and commercial
multiplayer applications.

6 Conclusion

FlockJS demonstrates the feasibility of browser-native, peer-to-peer multiplayer
game development using modern web technologies such as WebGPU and We-
bAssembly. By combining declarative APIs with a modular architecture, the
engine lowers the barrier to entry for developers while maintaining strong per-
formance across a range of network conditions.

Our results show that hybrid peer-to-peer topologies can significantly reduce
latency compared to full mesh networking, and that WebGPU-based rendering



FlockJS: Peer-to-Peer WebGPU Game Engine 11

maintains consistent frame rates even with dozens of sprites in motion. Devel-
oper feedback confirms the usability of FlockJS in educational and prototyping
contexts, with positive responses to its API design and low setup overhead.

Looking ahead, enhancements such as reliability layers, improved debugging
support, and mobile optimization will broaden the applicability of the engine.
FlockJS contributes to the democratization of multiplayer game development by
making scalable, high-performance networking and rendering accessible directly
within the browser.

References

1. Borges, R.C., Malheiros, M.d.G., Billa, C.Z., Pias, M.R., Bicho, A.d.L.: An open-
source framework using webrtc for online multiplayer gaming. In: Proceedings of
the 22nd Brazilian Symposium on Games and Digital Entertainment. pp. 143–150
(2023)

2. Chickerur, S., Balannavar, S., Hongekar, P., Prerna, A., Jituri, S.: Webgl vs. we-
bgpu: A performance analysis for web 3.0. Procedia Computer Science 233, 919–
928 (2024)

3. Dantas, A., Baquero, C.: Crdt-based game state synchronization in peer-to-peer
vr. In: Proceedings of the 12th Workshop on Principles and Practice of Consistency
for Distributed Data. pp. 45–55 (2025)

4. Fransson, E., Hermansson, J.: Performance comparison of webgpu and webgl in
the godot game engine (2023)

5. Mehanna, N., Rudametkin, W.: Caught in the game: On the history and evolution
of web browser gaming. In: Companion Proceedings of the ACM Web Conference
2023. pp. 601–609 (2023)

6. Onat, C.: GameBeam: A Decentralized Framework for P2P Multiplayer Game
Streaming. Ph.D. thesis, Worcester Polytechnic Institute (2025)

7. Qu, X., Key, M., Luo, E., Qiu, C.: Integrating hci datasets in project-based machine
learning courses: a college-level review and case study. In: International Conference
on Human-Computer Interaction. pp. 124–143. Springer (2024)

8. Qu, X., Sherwood, J., Liu, P., Aleisa, N.: Generative ai tools in higher education:
A meta-analysis of cognitive impact. In: Proceedings of the Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems. pp. 1–9 (2025)

9. Rodríguez Baquero, D.: Analysis of webrtc signaling (2021)
10. Trautwein, D., Raman, A., Tyson, G., Castro, I., Scott, W., Schubotz, M., Gipp,

B., Psaras, Y.: Design and evaluation of ipfs: a storage layer for the decentralized
web. In: Proceedings of the ACM SIGCOMM 2022 Conference. pp. 739–752 (2022)

11. White, W., Sowell, B., Gehrke, J., Demers, A.: Declarative processing for computer
games. In: Proceedings of the 2008 ACM SIGGRAPH symposium on Video games.
pp. 23–30 (2008)

12. Zhou, Z., Dou, G., Qu, X.: Brainactivity1: A framework of eeg data collection
and machine learning analysis for college students. In: International Conference on
Human-Computer Interaction. pp. 119–127. Springer (2022)


