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Abstract. This study verifies that a consumer-grade five-channel EEG
headset can, through a unified real-time decoding pipeline, deliver reli-
able directional control across different game genres. We introduce the
EEG Motor Imagery Game Controller (EMIGC). Muse 2 signals
undergo standard preprocessing and sliding-window segmentation before
entering a lightweight CNN-LSTM that decodes three sustained states
and six transitional states, which are mapped to left/neutral/right com-
mands. The same model seamlessly drives three Unity prototypes—Hide
and Seek, Snake, and a two-lane Rhythm game, while multimodal feed-
back enhances the user experience. An event-based logger and a Formula
Score provide fine-grained performance analysis, and questionnaire re-
sults indicate positive usability and immersion. EMIGC runs stably in
all prototypes, demonstrating the feasibility of consumer-grade EEG for
real-time, cross-genre game control.

Keywords: Brain-computer Interface System · Motor Imagery · Elec-
troencephalography (EEG) · real-time gameplay · BCI games · EEG
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1 Introduction

Electroencephalogram (EEG)-controlled gaming is an emerging field that enables
direct brain–computer interaction by translating neural activity into real-time
control commands. In particular, motor imagery (MI)—the mental simulation of
movement without physical execution—has gained prominence as a non-invasive
neural correlate of motor intention. Advances in artificial intelligence have signif-
icantly improved the decoding of MI-related EEG patterns, enabling recognition
of a user’s intended motor action. However, achieving real-time game control
using EEG signals remains a unique challenge, requiring low-latency signal pro-
cessing, robust machine learning algorithms, and game design paradigms that
are compatible with the constraints of brain-based input.

This experiment investigates the feasibility of using an EEG-Motor Imagery
Game Controller(EMIGC) system. The EMIGC system integrates signal pro-
cessing and robust machine learning models with performance evaluation as a
game controller. This system aims to optimize algorithmic performance and user
experience.
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1.1 Research Question

– How can EEG signals be sampled and processed to enable accurate
directional control in real-time gameplays?

– Can we develop a framework for MI-BCI games?

1.2 Game’s Mass Appeal

To ensure broad appeal and inclusiveness, we designed three EEG-controlled
games across different genres: a classic Snake game, a rhythm-matching game,
and a playful hide-and-seek scenario. These games were chosen for their intuitive
controls, low cognitive load, and suitability for diverse demographics.

We utilized consumer-grade EEG headsets for accessibility and ease of use,
accepting a trade-off in signal fidelity. These devices offer lower cost, simpler
operation, and faster setup compared to research-grade alternatives [29]. Mul-
timodal feedback—including visual and auditory cues—was integrated to en-
hance immersion and motivation, aligning with research showing its benefits in
BCI interaction. Our design prioritizes fast onboarding, diverse engagement, and
real-time playability in non-lab environments.

1.3 Limitations in Current BCI Game Design

Although MI-based BCI games are technically feasible, many suffer from con-
strained gameplay mechanics and minimal interactivity, as they are often devel-
oped primarily for algorithm validation rather than user experience [10]. Eval-
uations typically rely on classification accuracy or in-game scores, which fail to
isolate BCI performance due to various confounding factors. Distractions and
mental fatigue further affect users’ ability to perform consistent motor imagery.
Prior reviews highlight that well-designed, engaging gameplay can enhance both
user focus and control accuracy over time.

Our system is informed by these findings, aiming to improve game diversity,
reduce cognitive load, and support real-time responsiveness without requiring
long training phases.

2 Related Work

EEG-controlled games have gained increasing attention as BCI technology ma-
tures [2, 3, 11, 16, 17, 28–30]. Most studies focus on motor imagery (MI)-based
directional control, employing deep learning models such as CNNs and RNNs
to improve classification accuracy[4, 1]. However, due to the high variability and
noise of EEG signals, real-time reliability remains a key challenge [31].

To address these signal issues, various EEG preprocessing and feature extrac-
tion pipelines have been explored. A typical pipeline involves band-pass filtering
(e.g., 1–50 Hz) to remove low-frequency drift and high-frequency noise, followed
by normalization such as per-channel z-scoring to reduce inter-subject variance.
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After preprocessing, data is often segmented using sliding windows to generate
training samples for classification models [8].

Feature extraction plays a key role in improving model efficiency and gener-
alizability. For instance, Li et al. [14] applied power spectral density (PSD) and
differential entropy (DE) across five canonical EEG bands (delta to gamma),
followed by statistical channel selection. This approach reduced dimensionality
from 290 to 45 while preserving discriminative power, enabling real-time perfor-
mance.

There is an ongoing trade-off between time-domain deep learning approaches
and frequency-domain feature engineering. While CNN-based models can ex-
tract spatial-temporal patterns directly from raw signals, they often require
large datasets and computational resources. Frequency-based methods offer in-
terpretability and efficiency but may sacrifice some temporal resolution. Hybrid
architectures such as CNN+LSTM remain popular for capturing both spatial
and temporal dynamics in EEG data [4, 5, 7, 9, 12, 13, 15, 18–27, 32].

Game-based BCI interfaces have demonstrated improved engagement and
precision; a review of 2524 studies found that 26 of 28 reported positive out-
comes [10]. Yet, a systematic analysis of 80+ consumer-grade EEG games re-
vealed that most are designed for educational or clinical purposes, with minimal
interactivity and long training durations[29]. Devices like NeuroSky and Emotiv
are commonly used in “serious games,” with little focus on gameplay quality or
fast response. Common limitations include low control granularity, high latency,
and poor support for MI or emotion-based inputs.

These observations align with recent perspectives advocating for novel inter-
action paradigms tailored to BCI constraints, rather than imitating traditional
input methods [6]. Our EMIGC system responds to this direction by designing
game mechanics specifically tailored to the characteristics of MI-BCI interac-
tion, and by employing more reliable analytical methods in the study of MI-BCI
games.

2.1 Case Study: Limitations of Tux Racer for BCI Interaction

The open-source nature of Tux Racer, a 3D winter racing game, provides re-
searchers with easy access for BCI integration and data collection. However, it
presents several critical limitations for both EEG research and general gameplay.

First, its acceleration-based control system lacks intuitive directional map-
ping, making it difficult to directly assess input accuracy. Since scoring is based
on coin collection, performance is more influenced by route familiarity than by
precise control. Additionally, the delayed follow-camera introduces perceptual
lag and spatial disorientation, often leading to a disconnect between user input
and visual feedback, potentially introducing noise into EEG recordings.

Furthermore, the game’s continuous control demand and lack of angular con-
straints are ill-suited to the high latency and limited precision of EEG inputs.
These design mismatches conflict with core BCI experimental principles: re-
ducing cognitive load, minimizing confounding factors, and ensuring a natural
mapping between input and system response.
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In the following sections, we present the design, implementation, and evalu-
ation of the EMIGC system.

3 Method

3.1 EMIGC System Design

To systematically explore the feasibility and practical constraints of EEG-controlled
digital games, we developed a complete interactive system that tightly integrates
real-time EEG signal classification with responsive game logic. This system is
specifically designed to bridge the gap between raw brain activity and inter-
pretable, game-relevant input commands. We refer to this framework as the
EEG Motor Imagery Game Controller (EMIGC), highlighting its focus
on decoding motor imagery (MI) signals for in-game directional control. Figure
1 summarizes the structure of the EMIGC system.

EEG Data Acquisition EEG signals were recorded using the Muse 2 head-
band, which provides 5 channels (TP9, AF7, AF8, TP10, and Right AUX) sam-
pled at 256 Hz. For each participant, data was collected in two sessions: a training
session for model fitting, and a real-time session for gameplay testing. Partic-
ipants were instructed to perform six distinct motor imagery (MI) tasks cor-

Fig. 1. EMIGC Framework
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responding to directional intentions: left-to-middle, left-to-right, middle-to-left,
middle-to-right, right-to-left, and right-to-middle.

EEG Data Processing Raw EEG signals were band-pass filtered between 1–50
Hz to remove low-frequency drift and high-frequency noise. Z-score normalization
was then applied per channel to reduce inter-subject variance. A sliding window
(1000 ms, 256 samples; step 500 ms) was used to generate training segments.
Labels were derived from file metadata, and all segments in a file shared a one-
hot label.

EEG Data Classification We used a hybrid CNN–LSTM model to classify
EEG segments into six directional categories. CNN layers extract spatial pat-
terns across channels, while LSTM layers capture temporal dependencies. The
network architecture includes two convolutional blocks (Conv1D, BatchNorm,
ReLU, Dropout, MaxPooling), followed by LSTM, a dense ReLU layer, and
softmax output.

Game Design and Development To address the design limitations of early
EEG games such as Tux Racer, which failed to account for the specific constraints
of brain-based control, we propose three core design principles: ensuring intuitive
control schemes, minimizing cognitive load, and preserving engaging gameplay.

We eliminate unnecessary operations and complex mechanics to reduce ex-
ternal interference, and simplify interaction flow to lower execution difficulty
for users. In addition, the system incorporates multimodal feedback (visual and
auditory) to enhance the sense of responsiveness and overall immersion. While
improving user experience, we also maintain clear and structured command out-
puts to support stable and reliable EEG signal classification.

Event-Based Real-time Logging To enhance the reliability and depth of
EEG data analysis, the EMIGC system adopts an event-based real-time log-
ging mechanism during gameplay. Unlike traditional methods that rely solely
on game scores or overall accuracy, our system marks and categorizes EEG sig-
nals in response to discrete in-game events, including user command issuance,
directional decisions, and feedback triggers. This enables more granular evalua-
tion and opens up avenues for future research.

By aligning EEG segments with task-relevant events, this event-driven ap-
proach reduces the influence of irrelevant brain activity and minimizes interfer-
ence in the preprocessing and classification stages. It improves the signal-to-noise

Fig. 2. CNN + LSTM
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ratio and supports a more accurate assessment of user intent, response latency,
and classification reliability across varying interaction conditions.

Proposed improvements To address the limitations of games like Tux Racer,
which fail to consider the specific constraints of EEG-based control, we propose
that EEG-compatible games adopt simplified control schemes and avoid non-
intuitive or weakly responsive input designs. Additionally, cognitive load should
be minimized by removing non-essential gameplay mechanics and streamlining
interaction logic.

Our goal is to lower the learning curve, making directional control accessi-
ble even to users with limited gaming experience. To enhance user engagement
without compromising EEG signal quality, we incorporate visual and auditory
feedback designed to reinforce the sense of interactivity and immersion, while
minimizing the impact on EEG signal classification.

4 Result

Based on the EMIGC framework, we designed three EEG-controlled games
specifically tailored for motor imagery-based BCI interaction. These games follow
a consistent set of design principles: clear and minimalistic mechanics, turn-based
structure to accommodate EEG classification latency, and left/right/neutral di-
rectional control.

Each game is designed to be inclusive and accessible to users across different
age groups and genders, emphasizing intuitive interactions and low cognitive
load. Below, we describe the three games in detail.

Since the Unity Engine is widely used in other studies and is renowned for its
user-friendliness and helpful community. To stream inputs from EEG classifier
to the games, we used Python’s pynput.keyboard library to generate keyboard
inputs based on classified results.

Hide and Seek Game In this game, the player engages in a hide-and-seek
interaction with a child character. The player remains fixed at the center of the

Fig. 3. Hide And Seek Game
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screen, while the child appears intermittently on either the left or right side. The
player must move in the direction of the child within a limited time to “catch”
them. This theme makes the game suitable for players of all ages, including
children and adults.

In terms of gameplay design, the Hide and Seek game is intuitive and straight-
forward, requiring only left and right directional movements. Players simply need
to respond to the position of the child, making the game easy to understand and
accessible even for users with no prior gaming experience, making it particularly
suitable for research purposes. To enhance visual appeal, dynamic animations
such as body movement and jumping effects were added during character tran-
sitions. Additionally, the child’s visual design clearly indicates their location,
helping users quickly identify the correct target direction.

Figure 3 shows the Hide and Seek game, where for each round a child will
appear on the left or the right side of the screen, and the player has to move the
avatar from the middle to catch the child.

Snake Game Design Rationale We selected the classic Snake game as
one of our experimental games due to its simple rules and wide familiarity,
allowing players to quickly understand and engage with the gameplay without
requiring additional instructions. Players control the snake to move left, right, or
straight in order to eat food and grow longer. Based on this intuitive mechanic,
we further optimized the game’s presentation and system interaction to enhance
user experience under EEG control.

To increase engagement and reduce fatigue associated with brain-based input,
we adopted a cartoon-style visual design paired with soft sound effects. This not
only improves the game’s appeal but also avoids interference with EEG signal
quality. Given the 1̃-second latency in EEG signal recognition, food generation
was made controllable. This ensures that delayed inputs do not penalize the
player by missing targets, thereby enhancing fairness and evaluation reliability
in EEG-controlled conditions.

Additionally, we introduced several gameplay optimizations to improve fault
tolerance and playability: (1) the snake no longer dies upon colliding with itself,
offering players more movement freedom; (2) when hitting the screen bound-

Fig. 4. Snake Game
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ary, the snake now turns 180 degrees instead of wrapping around, providing
more intuitive spatial feedback. These adjustments reduce operational stress,
help maintain player focus, and create a clear and reliable environment for eval-
uating EEG-based directional control.

Rhythm Game Falling-style rhythm games are well-suited for studying
directional control input in BCI systems due to their engaging gameplay,
unit-test-like structure, strong rhythmic alignment, and compatibility
with left-right binary input when simplified to a dual-lane format. In this
game, notes on the track will fall with the rhythm of the song. When a note
enters the detection zone, the player will give the correct directional input to
fulfill the note and get the points from the note.

Unlike traditional 4-track, this game is tailored for a bi-directional control
task. When the player performs wrong actions, there’s no punishment except
that the combo counter will be reset, and the player cannot score the point of
that note. Missing a note is not a punishment, but the combo counter is a sunk
cost during a gameplay session, which means that the will to keep the combo
count is the driving force of the player to get more accurate inputs.

To accommodate EMIGC’s relatively high latency and variable accuracy, the
game employs soothing, melodic music and abandons the traditional rhythm-
game approach of strict beat-based note timing. Instead, each track allows play-
ers to register a correct input anywhere within a given bar. This design also
makes the game accessible to a wider audience, including those with no prior
experience in rhythm games.

4.1 Performance Metrics

Quantitative Approach Quantitatively, we used classification accuracy, score,
and skill score to evaluate the performance of EMIGC. Classification accuracy
directly assesses the effectiveness of EEG signal classification, and score is a sim-
ple yet intuitive way to evaluate how well the subjects play the games. However,
the discreteness of the score prevent us from precisely measuring the subjects’
controllness and skill while playing the game. For example, in the Hide And Seek

Fig. 5. Rhythm Game
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subject A is very close to catch the child, whereas subject B cannot get close to
the child at all. Both subjects get a score of 0, but obviously subject A is bet-
ter at playing the game. The event-based real-time logging mechanism ensured
that researchers could analyze every detail of the game state during the test.
Therefore, the skill score is used to more precisely measure how well a subject
performs in the games. Table 1 shows the definition of the metrics for each game.

– Hide And Seek:
1

n
Σn

i=1xmax · v̄

Because Hide and Seek emphasizes sustained correct input, its formula score
is defined as the cumulative amount of correctly executed directional con-
trols. Even if the player never reaches the child, each correct maneuver still
contributes to increasing their score. . n is the number of rounds played.
Within a round, xmax is the maximum distance the player has walked to-
ward the child divided by the player’s initial distance from the child. The
division guarantees that xmax is normalized between 0 and 1. v̄ is the aver-
age velocity of the player over the round. v̄ is normalized between 0 and 1.
The final output of this formula is a real number between 0 and 1, with 1
indicating complete control over the avatar, 0 indicating no control over the
avatar.

– Snake Game The composite scoring formula is designed to reflect the over-
all quality of EEG-based control, rather than relying solely on raw gameplay
outcomes. Traditional metrics, such as the number of food items collected,
provide limited insight into the precision, consistency, and responsiveness of
the user’s mental commands. In contrast, the proposed formula incorporates
multiple dimensions of control performance that are critical in BCI contexts.

Snake Score =
1

n

n∑
i=1

fi
fmax

· v̄i ·
(
1− si

smax

)
Specifically, the number of food items collected ( fi

fmax
) serves as an indicator

of task completion efficiency, while the average movement velocity (v̄i) cap-
tures the user’s ability to maintain continuous and stable control. To assess

Table 1. Definition of quantitative metrics for each game

Game Definition of Score Formula to Calculate Skill Score

Hide and Seek number of children
caught

1

n

n∑
i=1

xmax v̄

Rhythm Game number of notes hit 1

|X|
∑
x∈X

xcorrect=1

(
1−

xopp_time

xdir_time
−

xres_time

xwindow

)

Snake Game composite score of
food and movement

1

n

n∑
i=1

fi
fmax

v̄i

(
1− si

smax

)
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signal clarity and decision-making precision, the formula penalizes excessive
directional changes by including a switch count term

(
1− si

smax

)
, which re-

flects the number of directional switches made before successfully collecting
each food item.
All components are normalized to ensure the final score remains within a 0
to 1 range, facilitating meaningful comparison across participants and ex-
perimental conditions. This scoring structure provides a more nuanced and
reliable measure of EEG control quality, aligning with the experimental goal
of evaluating system responsiveness and user adaptability under real-time
constraints.

– Rhythm Game: The Formula Score (FS) for the rhythm game is designed
to reflect the user’s ability to control the game. Because the Rhythm Game
requires correct inputs within precise timing windows rather than random
actions, the core design of its formula score penalizes incorrect operations
made during attempts to achieve correct results and awards quick responses.
X It is the set of all samples. x It is a single sample X. This xdir_time is the
accumulated time on correct input. This xopp_time is the accumulated time
on incorrect input (not including rest state). This xwindow is the duration
during which input is allowed for the note in this sample. xresponse_time It
is the time between when the input is allowed for the note in this sample
and the moment the required input is fulfilled.

FS =
1

|X|
∑
x∈X

xcorrect=1

(
1−

xopp_time

xdir_time
−

xres_time

xwindow

)
(1)

Compared to the previous two formulas, this formula introduces penalties for
incorrect inputs and time, which can lead to negative values under certain
conditions.

4.2 Questionnaire

After completing EEG model training and gameplay, participants were asked
to complete two subjective questionnaires to assess the system’s usability and
overall game experience:

– System Usability Scale (SUS): Measures the usability and user satisfac-
tion of the system, with a score ranging from 0 to 100.

– Game Experience Questionnaire (GEQ): Evaluates the gaming expe-
rience across seven dimensions: competence, immersion, flow, tension, chal-
lenge, negative affect, and positive affect.

The scores from these questionnaires serve as preliminary qualitative indicators
for evaluating the playability and user acceptance of the games developed under
the EMIGC system.
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5 Discussion

Despite achieving promising directional control, several limitations remain. Real-
time EEG signal processing and classification demand considerable computa-
tional resources, and reducing the required training time is essential for improv-
ing user experience.

Future work will focus on extending the EMIGC system to a broader range of
games, optimizing the EMIGC game design paradigm, improve models, shorten
training time, and enhancing artifact reduction and adaptive learning to improve
system efficiency and user engagement.

All participants in this study remained anonymous, and no unrelated personal
data were collected or stored, ensuring full compliance with research ethics and
minimizing confidentiality risks.

These improvements are crucial steps toward making BCI-based gaming a
viable, scalable, and user-friendly technology.

5.1 Limitations and Future Work

Although our system has demonstrated the feasibility of EEG-based directional
control, several challenges remain.

The system still requires a relatively long and tedious training process. This
poses a significant entry barrier for new users, and the fatigue accumulated
during the training process is a negative factor for user experiences and in terms
of EEG-signal quality.

To improve the EEG data–acquisition process during model training, future
systems could integrate the EEG training workflow into a game engine (e.g.,
Unity), offering more intuitive and interactive guidance to lead users through
mental tasks. At the same time, the system would provide real-time visualization
of the EEG signals as feedback while the tasks are being performed.

To reduce training and calibration time, event-based real-time logging can be
used to have a dedicated worker thread pull buffered gameplay samples, run an
online learning algorithm, and push the updated model back to the game. This
lets EMIGC-based games support a relatively steep difficulty curve, granting
designers far greater creative freedom.

However, several limitations emerged during implementation. The system has
a roughly 1-second delay between EEG signal classification and game response,
which negatively impacts real-time gameplay experience. Additionally, because
of its technical limitations, it is also limiting genre diversity. The use of pynput
for simulating keyboard input, while convenient, may lead to inconsistent be-
havior across operating systems and lacks robustness for long-term deployment.

Connection via Blue Muse is not stable and makes the player really frustrated
when it loses connection and stops streaming. In the future, it is necessary to
ask for access to the Muse headband SDK.
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6 Conclusion

We asked whether consumer-grade MI-EEG can (i) yield reliable real-time game
commands and (ii) do so with a single pipeline that transfers across genres.
To answer this question, we built EMIGC, pairing a five-channel Muse 2 head-
set with minimal preprocessing, a CNN-LSTM decoder, and event-based log-
ging. Demonstrations on three Unity prototypes showed that the same trained
model converts six MI classes into stable left/neutral/right actions, and initial
SUS/GEQ ratings confirmed positive user experience. These findings provide
preliminary evidence that low-cost hardware and brief calibration already suf-
fice for coarse yet usable BCI control. Reducing the current 1-second latency,
proving the training process, and hardening the data link are our next targets
on the path from demo to mainstream use.
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