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Abstract. Personalization remains a major challenge in brain-computer
interface (BCI) gaming, where one-size-fits-all thresholds often fail to
capture individual variability in EEG signals. This paper presents a real-
time EEG-controlled implementation of an open-source game, enhanced
with user-specific threshold calibration and adaptive feedback. Using the
low-cost Muse S EEG headband, our system maps directional motor im-
agery to in-game controls (left, right, idle) through a five-stage pipeline:
signal acquisition, preprocessing, feature extraction, offline calibration,
and real-time decision-making. In a study with fifteen undergraduate par-
ticipants, two-thirds demonstrated improved directional control follow-
ing personalized calibration. Participants also reported high engagement
and usability. These findings show that personalized real-time interaction
is feasible using consumer-grade EEG devices. This work contributes a
replicable framework for accessible BCI gaming and offers practical guid-
ance for developers building EEG-based interactive systems.

Keywords: brain-computer interface - EEG-based game control - motor
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1 Introduction

Brain-computer interfaces (BCIs) enable users to interact with digital systems
using neural activity, offering new possibilities beyond traditional input methods.
While BCIs have historically been developed for clinical and assistive purposes,
they are increasingly gaining relevance in consumer-oriented domains such as
gaming and virtual reality. These emerging applications demand not only reliable
control but also engaging, personalized user experiences that adapt to individual
variability in brain signals.

This paper presents a real-time EEG-controlled version of the open-source
game Tux Racer, enhanced with two personalization strategies: (1) a pre-game
calibration step that adjusts left—right EEG control thresholds based on user-
specific signal profiles, and (2) a real-time feedback loop that responds to game-
play performance. To our knowledge, this is the first study to adapt a widely
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available, mainstream open-source game for EEG-based control using both strate-
gies.

Unlike prior BCI research that focuses on custom-built games or fixed con-
trol rules, our system introduces a replicable pipeline that combines real-time
EEG interaction with pre-session personalization. The system is built using the
Muse S headband, a low-cost consumer-grade EEG device, and is designed to be
accessible to developers and researchers without specialized biomedical training.

To support this contribution, we conduct a focused literature review on
EEG-controlled games and assistive systems. While many existing approaches
explore EEG-driven control, few incorporate real-time personalization within
open-source or widely used gaming environments. Our system addresses this
gap by demonstrating that reliable and engaging interaction is achievable when
personalization is applied from the outset.

This work aims to serve as a proof of concept for accessible EEG-based
game control and to highlight how user-specific adaptation can improve usability,
engagement, and control accuracy.

Ethics Statement: All participants provided informed consent prior to the
study. The research protocol was reviewed and approved by the university’s
Institutional Review Board (IRB), ensuring compliance with ethical standards
for human subject research and data privacy.

This paper makes the following contributions:

— A real-time EEG-controlled version of Tux Racer integrating pre-session
threshold calibration and real-time performance-based feedback;

— A focused review of EEG-based game control systems, identifying the lack
of personalization in open-source environments;

— A reproducible design framework and explanation of key neuroscience con-
cepts tailored for interdisciplinary computer science researchers.

2 Related Work

EEG-based brain-computer interfaces (BCIs) have been explored extensively in
gaming and assistive control systems. Prior research has covered signal acquisi-
tion, classification, and user interaction [2, 3,5, 6, 10, 18,9, 20, 31, 34, 27,23, 7, 19,
16,50, 35, 37,43,41,40,42, 52, 36, 55, 11, 54, 30, 46, 13, 38, 26, 25, 39, 21,51,1,12, 14,
47], but relatively few studies focus on personalization and engagement within
consumer-grade game environments. This section summarizes representative stud-
ies and identifies gaps our system addresses.

2.1 EEG Signals and Game Control Strategies

Different EEG signal types have been utilized for control, including motor im-
agery, attention-based modulation, and steady-state visual evoked potentials
(SSVEP). Liao et al. [21] and Wang et al. [51] used alpha rhythm fluctua-
tions and fractal dimension analysis respectively to assess attention levels during
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gameplay. Belkacem et al. [5] introduced eye movement and EEG fusion for di-
rectional commands in custom games. Malete et al. [23] applied EEG-based con-
trol to a 3D racing game using visual stimulus and attention decoding. Sterk [48§]
demonstrated a Unity-based BCI system using OpenBCI, highlighting a modular
pipeline for mind-controlled play. Palumbo et al. [29] examined EEG correlation
and movement timing in a motor-imagery-based maze game. Tariq et al. [49] ap-
plied SVM-based classification of motor imagery EEG to a maze navigation task.
Pfurtscheller et al. [32] introduced a hybrid BCI combining ERD and SSVEP sig-
nals for orthosis control via brain-switching. An et al. [4] developed a combined
ERP and SSVEP system for VR-based navigation using threshold calibration.
Chi et al. [9] proposed a hybrid BCI using motor imagery and intermodulation
SSVEP for enhanced control precision. Li et al. [20] investigated tACS-based
enhancement of motor imagery and SSVEP-based BCI performance, relevant to
improving game control fidelity. Ahmed et al. [1] developed a hybrid EEG-based
BCI system for smart games, detecting both attention and relaxation states us-
ing CNN and random forest classifiers, contributing to more nuanced control
strategies.

2.2 Adaptation and Personalization

Adaptation techniques have gained traction in recent years to address individ-
ual variability in EEG signals. Ahn et al. [2] provided a comprehensive review
of EEG signal variability and recommended adaptive algorithms for improved
performance. Alchalabi et al. [3] proposed using EEG to train attention via real-
time neural feedback. Prapas et al. [35] applied fuzzy logic to tune a personalized
threshold for EEG attention-based interaction. Ma et al. [22] demonstrated the
effectiveness of personalized neurofeedback games for adolescents with ADHD,
revealing the promise of tailored interaction loops. Pantforder et al. [30] advo-
cated for accessible neurotechnology design and engagement-focused BCI inter-
action in participatory game contexts. Pinto et al. [33] proposed a personalized
neurofeedback system using individual baselines for working memory enhance-
ment. Pfurtscheller et al. [32] emphasized subject-specific calibration in hybrid
BCI systems to switch between control modalities. Saichoo et al. [44] used user-
specific parameter tuning to reduce misclassification rates. Souza and Naves [47]
provided a scoping review of attention detection using EEG in virtual environ-
ments, distinguishing stimulus-driven and goal-directed mechanisms relevant for
personalizing BCI interfaces. However, most of these approaches are limited to
custom or simplified environments, lacking integration with established open-
source games.

Our system builds on these insights by introducing personalized threshold
calibration and feedback loops within Tux Racer—an open-source game not
previously adapted for EEG control. The personalization is informed by offline
data analysis and considers factors such as user fatigue and cognitive state, which
are rarely addressed in earlier game-integrated BCI systems.
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2.3 User Engagement and Feedback Loops

While accuracy remains a primary performance metric, user engagement is in-
creasingly recognized as essential for sustained BCI interaction. Alchalabi et
al. [3] and Wang et al. [51] began incorporating engagement indicators into their
evaluations. Plass-Oude Bos et al. [34] explored how feedback mechanisms influ-
ence immersion and motivation. Vourvopoulos et al. [50] highlighted the role of
BCI in neurofeedback training and game immersion within rehabilitation con-
texts. Sawangjai et al. [45] reviewed practical limitations of consumer-grade EEG
hardware in user-centered BCI studies, emphasizing ease of setup and data qual-
ity trade-offs. Glavas et al. [13] quantitatively evaluated EEG devices for real-
time emotion and workload monitoring in gaming. Krigolson et al. [18] validated
a mobile EEG platform for cognitive workload tracking, supporting portable
real-time feedback. Nouri [28] used EEG and HRV to evaluate immersion in VR,
emphasizing affective computing. Xie et al. [53] explored event-related poten-
tials in real-world gaming sessions, highlighting attention, fatigue, and workload
signals. An et al. [4] measured immersion and response latency in hybrid BCI
VR settings. Pinto et al. [33] and Saichoo et al. [44] reported improved user
satisfaction and sustained engagement through adaptive feedback mechanisms.
Chi et al. [9] demonstrated a hybrid BCI combining motor imagery and in-
termodulation SSVEP to enhance immersive control. Li et al. [20] showed that
transcranial stimulation can improve BCI performance and possibly engagement.
Park et al. [31] developed a robust BCI framework addressing user fatigue and
variability in attention-based gaming. Bellos et al. [6] proposed modular design
strategies for improving engagement and signal responsiveness in neuroadaptive
games. Garcia et al. [12] reviewed EEG-based engagement metrics across VR
environments, which informs our approach to feedback loop design. Gong et
al. [14] demonstrated EEG-based detection of working memory load in AR gam-
ing tasks, which can support dynamic difficulty adaptation for sustained user
engagement.

2.4 Wearable and Mobile EEG Systems

Recent advances in wearable and mobile EEG systems have facilitated real-time
BCI applications in more naturalistic settings. Mullen et al. [24] demonstrated
a mobile EEG framework capable of real-time artifact rejection and brain state
decoding using dry electrode headsets, laying the groundwork for on-the-go BCI
interactions. Cannard et al. [8] validated the Muse headset against laboratory-
grade EEG systems in auditory and visual ERP paradigms, supporting its reli-
ability for research and game-based use. Heim et al. [15] developed a real-time
self-paced motor imagery and execution system using functional neural networks,
achieving high decoding accuracy in game-like environments. Kosmyna et al. [17]
introduced AttentivU, a wearable system that provides neurofeedback to enhance
attention in everyday tasks, illustrating the potential of discreet, continuous en-
gagement monitoring.



Adaptive EEG Control in Tux Racer 5

These systems enable portable, low-latency feedback loops that are essential
for adaptive game control and personalized user experience in EEG-based gaming
environments.

We extend this direction by evaluating not only accuracy and response time
but also user engagement through a real-time feedback loop. Our adaptive system
dynamically responds to user success or fatigue, offering a more engaging and
sustainable control experience.

2.5 Summary of Contributions

Table 1. Summary of EEG-Controlled Game Studies (Extended)

Study Signal Personal. Game Metric
Liao (2012) Alpha (Attn.) None Custom Acc.
Wang (2010) Fractal Dim. None Custom Acc., Engag.
Alchalabi (2018) Attn. Basic FB Neuro. Acc.
Belkacem (2015) Eye+EEG None Custom Dir. Acc.
Coyle (2011) Motor Img. Offline BCI Ctrl. Acc.
Ahn (2014) Review Adaptive Multi -

Bos (2010) Mixed FB Loop BCI Engag.
Nijholt (2009) Conceptual - Vision -
Malete (2019) SSVEP None 3D Dir. Acc.
Bonnet (2013) Motor Img. Coop. FB Multi Consist.
Vourvopoulos (2017) Motor Img. NeuroFB Rehab Immers.
Prapas (2023) Attn. (Fuzzy) Thresh. Puzzle Attn. Score
Sterk (2022) Motor Img. Modular Sys Unity Acc.
Keutayeva (2025) SSVEP Review Multi -

Ma (2022) NeuroFB ADHD Pers.  Custom WM, Acc.
Sawangjai (2019) Review - Multi Setup Usab.
Pantforder (2022) Review Acc. Design Games  Persp., Immers.
Simar (2020) Motor Img. Pipeline Eval FPS Classif. Acc.
Glavas (2022) EEG+Emotion Realtime Mon. Gaming Workload, Valence
Krigolson (2021) EEG+ERP Mobile Track Multi EEG Quality
Pinto (2021) NeuroFB Indiv. Baseline Custom WM, Persp.
Xie (2025) ERP Real-World Exp. Study  Neural Patterns
Nouri (2025) EEG+HRV  Immersive Eval Custom Emot., Immers.
Palumbo (2021) Motor Img. Not Specified Maze EEG Corr., Speed
Saichoo (2022) SSVEP FB Loop Custom Acc., FP
Tariq (2018) Motor Img. SVM Model Maze Classif. Acc.
An (2024) ERP+SSVEP Threshold VR Maze ERP, Latency

Pfurtscheller (2010) ERD-+SSVEP  Brain Switch  Orthosis  Ctrl. Acc., FP

Abbreviations used:
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Attn. Attention
FB Feedback
Neuro. Neurofeedback

Dir. Acc. Directional Accuracy
Ctrl. Acc. Control Accuracy
Engag. Engagement

Img. Imagery
Thresh. Threshold
Acc. Accuracy

Consist. Consistency
Immers. Immersion

Coop. FB Cooperative Feedback
NeuroFB Neurofeedback

WM Working Memory
ERP Event-Related Potential
HRV Heart Rate Variability
Persp. User Perspective
Mon. Monitoring
Eval. Evaluation
Corr. Correlation
Methods

System Overview

We developed a real-time EEG-controlled game prototype by integrating the
open-source racing game Tuz Racer with brain signal input captured via the
Muse S headband (4-channel EEG, sampled at 256 Hz). The system translates di-
rectional motor imagery into in-game controls (left, right, and idle). Our pipeline
consists of the following components:

1.

Signal Acquisition: Real-time EEG signals are captured using the Muse
SDK and streamed to a Python-based interface.

Preprocessing: Raw EEG data is filtered using a 1-50 Hz bandpass and a
60 Hz notch filter to remove common artifacts.

Feature Extraction: Power spectral density (PSD) features are extracted
from frontal and temporal channels, with a focus on alpha and beta frequency
bands.

Threshold Calibration: A 90-second pre-game calibration session collects
baseline mental state data for each participant. Thresholds for left, right,
and idle commands are computed using mean and standard deviation of
task-specific PSD activity, followed by cross-subject normalization.
Decision and Feedback Module: Incoming signals are matched against
calibrated thresholds in real time. Detected intent triggers in-game move-
ment. A feedback loop monitors recent predictions and adjusts the visual
cue timing and reaction window to maintain engagement and challenge.
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Fig. 1. System architecture diagram for EEG-based game control. EEG signals from
the Muse headset are processed and translated into control signals for the Tux Racer
game. Real-time visual feedback reinforces the user’s intent through in-game movement.

Although this prototype uses the Muse S headset, the system architecture is
modular and can be adapted for other EEG hardware platforms that support
real-time data access.

3.2 Personalization Strategy

Our system emphasizes personalization through offline threshold calibration and
dynamic feedback adaptation. Each participant’s unique EEG patterns—captured
during the pre-game calibration—are used to compute individualized thresholds
that account for signal variability and mental fatigue. This avoids the limitations
of one-size-fits-all models and enables intuitive control without requiring model
retraining during gameplay.

3.3 Participant Recruitment and Demographics

Fifteen undergraduate students (8 male, 7 female), aged 19-21, from our Com-
puter Science department participated in the study. All were right-handed or
ambidextrous, though handedness was not formally recorded. None had prior
experience with EEG systems or the Tux Racer game. Written informed consent
was obtained from all participants.

The study was reviewed and approved by our university’s Institutional Re-
view Board (IRB). Ethical procedures included anonymized data collection, vol-
untary participation, and compliance with institutional data privacy guidelines.
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3.4 Experimental Protocol

Participants were seated in a quiet room and fitted with the Muse S headband.
Each session began with a 90-second pre-game calibration to generate individ-
ualized thresholds. Participants then completed three rounds of gameplay, each
lasting 3—4 minutes, with rest breaks between rounds to mitigate fatigue.

During each round, directional cues (left, right, or idle) were presented at
regular intervals. EEG responses were classified in real time, and corresponding
control commands were executed in the game. Participants were encouraged to
provide verbal feedback on system responsiveness and engagement.

3.5 Data Handling and Privacy

All EEG data were anonymized using randomly assigned participant IDs (e.g.,
Subject 1-15). No personal identifiers were recorded. After data collection, files
were encrypted and stored on a secure, access-controlled institutional cloud plat-
form. All data handling complied with university policy and IRB-approved eth-
ical standards.

Fig. 2. Participant playing EEG-controlled Tux Racer during real-time trials.

4 Results

4.1 Directional Classification Accuracy

We evaluated the system’s ability to decode directional intent—Ileft, right, and
idle—using real-time EEG signals. Accuracy was measured per participant across
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three post-calibration gameplay sessions. Table 2 summarizes average classifica-
tion accuracy per direction for all participants.

Table 2. Average Classification Accuracy per Direction

Participant Left (%) Right (%) Idle (%)

P1 65 72 85
P2 58 63 80
P3 70 73 82
P4 71 64 83
P5 67 68 87
P6 66 71 85
p7 75 73 86
P8 72 76 84
P9 63 71 80
P10 74 70 87
P11 69 72 83
P12 70 67 80
P13 68 72 81
P14 72 69 82
P15 70 68 87

Most participants achieved reasonable directional control accuracy, with idle
states being the easiest to detect. One participant (P4) consistently triggered left
turns regardless of intent, likely due to a poorly tuned threshold or alpha-band
signal noise. These cases underscore the importance of robust and personalized
calibration.

4.2 Usability and Engagement Feedback

Participants rated their experience across several dimensions using a 5-point
Likert scale (5 = strongly agree). The results suggest generally high enjoyment,
moderate control perception, and low to moderate fatigue. Table 3 summarizes
average ratings.

Table 3. Participant Feedback Summary (1-5 Likert Scale)

Metric Avg. Score Min Max
Enjoyment 4.1 3 5
Sense of Control 3.6 2 5
Mental Fatigue 2.8 1 4
Responsiveness 3.3 2 5
Calibration Difficulty 2.4 1 4
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Verbal feedback emphasized novelty and engagement, with some participants
noting mild frustration when feedback lagged or when sustained concentration
was required for multiple rounds.

4.3 Effect of Personalization

To evaluate the impact of threshold personalization, we compared directional ac-
curacy from the initial calibration phase (pre-personalization baseline) to post-
calibration gameplay. Ten of fifteen participants showed noticeable improvement
in control accuracy after personalization, with average gains between 8-12 per-
centage points.

We conducted a paired two-tailed t-test comparing mean directional accu-
racy across participants before and after personalization. The results were sta-
tistically significant (¢(14) = 3.21, p = 0.0065), confirming that offline threshold
calibration improved decoding performance.

4.4 Error Patterns and Challenges

Some participants encountered misclassification errors when attempting to switch
mental states quickly or inconsistently. In particular, ambiguous EEG patterns
during direction alternation led to incorrect predictions in real time. These find-
ings suggest that future versions may benefit from real-time adaptive classifiers,
additional sensing modalities, or more explicit cueing mechanisms to stabilize
mental intent during transitions.

5 Discussion

This study demonstrates the feasibility of using a consumer-grade EEG head-
set for real-time game control through personalized threshold calibration. Even
without online retraining or deep learning models, our system reliably translated
motor imagery signals into gameplay actions using individualized thresholds and
a lightweight decision engine.

5.1 Interpretation of Findings

Personalized pre-game calibration significantly improved control accuracy for
most participants, highlighting the value of subject-specific tuning in non-clinical
BCI settings. The use of Tux Racer—an open-source, mainstream game—combined
with low-cost EEG hardware represents a novel, accessible approach for EEG-
based game interaction.

5.2 Limitations

Our sample was limited to 15 undergraduate students from a single department,
and the study used only one EEG device. The absence of a keyboard-based
control condition and online adaptation also restricts long-term generalizability.
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5.3 Future Directions

Future work will expand participant diversity, explore online threshold adjust-
ment, and evaluate multimodal input integration (e.g., eye tracking, heart rate).
We also aim to investigate applications in classroom and rehabilitation settings,
where personalized EEG control may support cognitive training, emotional reg-
ulation, and inclusive gameplay.

6 Conclusion

We presented a real-time EEG-controlled version of Tux Racer that integrates
personalized threshold calibration and feedback using a low-cost, consumer-
grade EEG headset. The system enabled participants to navigate a mainstream
game environment using non-invasive brain signals, without requiring complex
classifiers or retraining. Our findings support the potential of accessible brain-
computer interfaces for a wide range of interactive applications and provide a
foundation for future work in personalized EEG-based control.
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