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Abstract. Artificial Intelligence (AI) agents have evolved from narrow,
rule-based programs to versatile, learning-driven systems capable of per-
ceiving, reasoning, and acting in complex, dynamic environments. Ad-
vances in deep learning, reinforcement learning, large language models,
and multi-agent coordination have enabled increasingly integrated ar-
chitectures that combine cognition, planning, memory, and interaction.
However, deploying these systems in human-centered domains such as
healthcare and education requires more than technical sophistication;
usability, trust, interpretability, and ethical alignment are equally criti-
cal.
This paper presents a Systematic Literature Review (SLR) conducted
in accordance with PRISMA guidelines, covering peer-reviewed research
from January 2018 to March 2025. Guided by three research questions,
we (RQ1) map the core architectural components, design patterns, and
enabling technologies that define contemporary AI agents; (RQ2) exam-
ine applications in healthcare and education to identify domain-specific
HCI considerations; and (RQ3) synthesize key challenges and future
research opportunities for building robust, adaptable, and trustworthy
human-centered agents. Our analysis integrates insights from cognitive
science-inspired models, hierarchical reinforcement learning, hybrid sym-
bolic–subsymbolic approaches, and large language model-based reason-
ing. By combining a technical synthesis with human-centered perspec-
tives, this review provides a roadmap for advancing AI agents from ex-
perimental prototypes to reliable partners in real-world, user-facing con-
texts.

Keywords: AI agents · human-centered AI · systematic literature re-
view · PRISMA · cognitive architectures · large language models · rein-
forcement learning · healthcare applications · educational technology ·
trust and interpretability

1 Introduction

Artificial intelligence (AI) agents—autonomous systems capable of perceiving
their surroundings, reasoning about possible courses of action, and executing
decisions—have undergone rapid evolution over the past seven decades. In this
paper, we define an AI agent as an integrated system that combines perception,
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reasoning, action, and interaction modules, operating in dynamic environments
with varying levels of autonomy. Figure 1 illustrates a typical modular archi-
tecture, including memory, planning, tool use, and interaction capabilities, that
underpins modern AI agents.

Figure 1 illustrates a representative architecture, in which the agent inte-
grates memory, planning, tool usage, and action execution. This modular or-
ganization supports adaptability, multi-step reasoning, and interactive capabili-
ties—key traits for human-centered AI systems.

Fig. 1. A high-level modular architecture of a modern AI agent, showing key compo-
nents such as memory (short- and long-term), planning, tool use, and action execution.
These components interact to enable perception, reasoning, and decision-making in dy-
namic environments.

Early AI agents, rooted in symbolic reasoning systems of the 1950s and 1960s,
relied on hand-crafted rules and logic-based methods, excelling in constrained
domains but struggling with adaptability and uncertainty [70, 12]. The intro-
duction of statistical learning and probabilistic reasoning in the 1980s and 1990s
enhanced reliability, while the emergence of reinforcement learning (RL) en-
abled agents to learn policies through trial-and-error interactions [16, 20, 27, 73].
The integration of deep neural networks with RL (DeepRL) led to milestones
such as superhuman performance in Atari games and Go [67, 68]. More recently,
advances in perception, natural language understanding, and cognitive-inspired
principles—combined with large language models (LLMs)—have enabled agents
to adapt, collaborate, and mirror aspects of human reasoning in dynamic, open-
ended environments [4, 35, 47].

Today, AI agents are increasingly deployed in high-stakes, human-facing con-
texts: self-driving cars navigating congested urban environments [74, 54], au-
tonomous laboratories accelerating scientific discovery [30, 92], virtual assistants
managing complex user queries [75], and automated trading systems operating in
financial markets [8]. These deployments are enabled by advances in deep learn-
ing for perception [32, 23, 12], RL for decision-making [50, 49], LLMs for commu-
nication and reasoning [9, 4], and multi-agent coordination frameworks [85].
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Despite these advances, developing unified, human-centered AI agents re-
mains a grand challenge. Such systems must integrate perception, abstract rea-
soning, hierarchical planning, and flexible communication while ensuring safety,
interpretability, and alignment with human values. In human–computer inter-
action (HCI) contexts, these requirements extend to usability, trust calibration,
ethical compliance, and user experience design. Failures in these areas—whether
due to distributional shift, opaque decision-making, or misaligned objectives—can
erode user trust and limit adoption.

This paper presents a Systematic Literature Review (SLR), con-
ducted in accordance with PRISMA guidelines, of AI agent architectures, method-
ologies, and applications from January 2018 to March 2025. We synthesize find-
ings from peer-reviewed literature across multiple databases, focusing on foun-
dational frameworks, key enabling technologies, and application patterns in do-
mains such as healthcare and education—two areas where human-centered AI
agents are both urgently needed and underrepresented in prior surveys. We also
identify critical challenges—robustness, explainability, resource efficiency, and
ethical alignment—and propose a structured design framework to guide new-
comers and practitioners in developing trustworthy, human-centered AI agents.

Research Questions

To guide our review and ensure alignment with our human-centered focus, we
address the following research questions:

– RQ1: What are the core architectural components, design patterns, and
enabling technologies that define contemporary AI agents?

– RQ2: How are AI agents currently applied in healthcare and education, and
what HCI-specific considerations emerge from these domains?

– RQ3: What are the key challenges, limitations, and research opportuni-
ties for developing robust, adaptable, and trustworthy human-centered AI
agents?

By combining a historical perspective with a contemporary synthesis of re-
search, this work aims to bridge the gap between ambitious visions for AI agents
and the practical realities of designing, evaluating, and deploying them in real-
world, human-facing contexts.

2 Related Work

The rapid evolution of AI agents in both research and industry has led to a surge
in literature consolidating their historical development, architectural principles,
and practical applications. Existing works fall broadly into two categories: (i)
systematic or domain-specific reviews synthesizing trends and challenges, and
(ii) technical frameworks that have directly shaped agent design and evaluation,
often with implications for human–AI interaction (HCI).
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2.1 Survey-Based Contributions

Several comprehensive surveys have examined the AI agent landscape from dif-
ferent perspectives. Wang et al. [76] provide a holistic review of large language
model (LLM)-based agents, covering foundational design principles, application
domains, and evaluation strategies. Their work emphasizes the architectural
building blocks—planning, memory, and tool use—but remains broad in scope,
offering limited guidance for human-centered design.

Guo et al. [21] focus on multi-agent systems for simulation-based research,
contrasting single-agent and multi-agent paradigms in terms of profiling, com-
munication, and decision-making. While insightful for collaborative and com-
petitive agent behaviors, their emphasis is primarily on simulation rather than
real-world, user-facing applications.

Xi et al. [81] explore LLMs as foundational models for AI agents, with ap-
plications in agent-to-agent, human-agent, and multi-agent interactions. They
highlight autonomy and adaptability as key properties, yet their review does not
deeply address usability or trust in human-facing domains.

Xie et al. [84] examine multimodal agents, analyzing how textual, visual,
and auditory capabilities influence design frameworks and evaluation. This per-
spective is crucial for HCI, as multimodality enables richer user experiences,
but their review is technology-centric and omits structured design guidance for
domain-specific adoption.

Fig. 2. Taxonomy of prior work on AI agents. Survey-based contributions consoli-
date literature on architectures, components, and domains, while technical frameworks
demonstrate new methods and interaction paradigms. The HCI relevance dimensions
highlight how these works contribute to trust, usability, multimodal interaction, and
domain-specific design.
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2.2 Influential Technical Frameworks

Alongside surveys, several seminal technical works have directly influenced HCI-
relevant AI agent design.

ReAct (Reason + Act) [86] introduced a prompting paradigm that in-
terleaves reasoning traces with action steps, enabling interpretable, multi-step
decision-making. By allowing human observers to follow an agent’s thought pro-
cess, ReAct contributes to transparency and trust—critical factors for user ac-
ceptance.

Voyager [78] demonstrated continual, open-ended skill acquisition in the
Minecraft environment through autonomous exploration, curriculum generation,
and skill reuse. Although not explicitly HCI-focused, its mechanisms for skill
composition and adaptation have strong implications for agents operating in
long-term, user-facing contexts.

Generative Agents [55] presented a sandbox environment populated with
agents exhibiting believable, human-like social behaviors. This work offers a
blueprint for designing agents that can maintain coherent identities and social
dynamics, directly aligning with HCI concerns in domains such as education,
healthcare, and collaborative work.

Other open-source frameworks, such as AutoGPT and LangChain Agents,
have lowered the barrier for developing tool-augmented LLM agents, further
enabling rapid prototyping and integration in user-centric applications. However,
these frameworks often lack rigorous evaluation for safety, interpretability, and
usability.

Figure 2 provides a visual taxonomy summarizing how prior works cluster
into survey-based contributions and technical frameworks, and how each relates
to key HCI relevance dimensions.

2.3 Synthesis and Research Gap

Table 1 synthesizes prior surveys and technical frameworks, comparing their
scope, contributions, HCI relevance, and limitations. While existing surveys pro-
vide valuable overviews, and technical works push the boundaries of agent capa-
bilities, few combine architectural synthesis with explicit HCI design principles
or offer domain-specific guidance for healthcare and education. This gap moti-
vates our work: a systematic literature review integrating architectural trends,
human-centered design considerations, and practical case studies.

3 Methodology

We conducted a Systematic Literature Review (SLR) in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [51] to ensure transparency, reproducibility, and methodological rigor.
The review targeted peer-reviewed studies on AI agents published between Jan-
uary 2018 and March 2025, with an emphasis on works relevant to both
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Table 1. Summary of key prior works on AI agents, with scope, contributions, HCI
relevance, and gaps addressed by this SLR.

Paper Scope Key Contributions HCI Relevance Gaps

Wang et al.
(2024)

LLM agent sur-
vey

Components, applica-
tions, metrics

Core modules;
limited user focus

No design guid-
ance

Guo et al. (2024) Multi-agent sims Single vs. multi-agent,
domains

Collab. behavior
insights

No real-world
HCI

Xi et al. (2023) LLM agent foun-
dations

Autonomy, adaptability,
interaction

Highlights adapt-
ability

Limited
trust/usability

Xie et al. (2024) Multimodal
agents

Text, vision, audio inte-
gration

Richer interac-
tions

No domain HCI
guidance

ReAct (2022) Reason+Act
prompting

Interleaves reason-
ing/actions

Improves inter-
pretability

Prompt-based
only

Voyager (2023) Continual skill
learning

Open-ended exploration,
skills

Adaptable to
users

Game-only con-
text

Generative
Agents (2023)

Social sandbox
agents

Coherent identities, so-
cial dynamics

Social HCI poten-
tial

No applied eval.

foundational architectures and human–AI interaction (HCI) considerations. This
process was designed to directly address the three research questions outlined in
Section Introduction, by:

– Mapping the core architectural components and enabling technolo-
gies of AI agents (RQ1);

– Identifying and analyzing applications in healthcare and education with
explicit HCI considerations (RQ2);

– Synthesizing challenges and opportunities to inform future development
of robust, adaptable, and trustworthy human-centered agents (RQ3).

3.1 Search Strategy

To address the limitations of prior surveys and strengthen methodological rigor,
we expanded the search beyond Google Scholar to include six major scholarly
databases: Google Scholar, ACM Digital Library, IEEE Xplore, Scopus, Web of
Science, and PubMed. This multi-database approach ensured coverage of both
computer science and application-specific research in healthcare, education, and
other domains, directly supporting the breadth needed for RQ1 and RQ2.

We used a combination of general and domain-specific search strings, includ-
ing:

– "AI Agent" OR "Autonomous Agent" OR "Intelligent Agent"
– "Reinforcement Learning Agent" OR "Multi-Agent System"
– "Large Language Model Agent" OR "LLM-based Agent"
– Domain-specific combinations such as "AI Agent" AND Healthcare, "AI

Agent" AND Education.
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The full list of queries by topic is provided in Appendix A.
The review process followed three stages:

1. Identification: Database queries retrieved 310 records.
2. Screening: After removing duplicates, 310 unique records were screened by

title and abstract, resulting in 66 candidate papers.
3. Eligibility: Full-text review of these 66 papers led to the inclusion of 29

studies in the final synthesis.

Fig. 3. PRISMA flow diagram summarizing the literature search and selection pro-
cess. Records identified (n=310), after duplicates removed (n=310), after title/abstract
screening (n=66), and final included studies (n=29).

This multi-database approach ensured coverage of both computer science and
application-specific research in healthcare, education, and other domains [65, 52].

3.2 Inclusion and Exclusion Criteria

Studies were included if they:
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– Presented a peer-reviewed research paper or reputable preprint available in
full text.

– Focused directly on AI agent architectures, frameworks, or applications (RQ1,
RQ2).

– Were published between January 2018 and March 2025 in English.

Studies were excluded if they:

– Were inaccessible in full text (e.g., abstract-only or behind a paywall without
institutional access).

– Mentioned AI agents only tangentially without substantive technical or HCI
contributions (RQ1–RQ3).

– Were non-English, to maintain analysis consistency and avoid misinterpre-
tation.

3.3 Data Extraction and Analysis

For each included study, we extracted:

– Bibliographic metadata: authors, year, venue.
– Technical focus: architecture, reasoning method, perception modules, in-

teraction model (RQ1).
– HCI considerations: usability, transparency, trust, user evaluation (RQ2).
– Domain relevance: e.g., healthcare, education, business, entertainment

(RQ2).
– Key contributions and limitations (RQ3).

We then applied thematic coding to group studies into three major categories:
Core Components (e.g., memory, planning, tool use), Applications (healthcare,
education, business, entertainment), and Paradigm-Shifting Designs (e.g., sym-
bolic–neural integration, multimodal reasoning). This categorization ensured
that the synthesis directly addressed RQ1 by mapping technical foundations,
RQ2 by evaluating domain-specific use cases, and RQ3 by identifying persistent
challenges and emerging research opportunities.

4 Results

This section presents the results of our systematic review, organized into three
main areas: (i) core architectures and components of modern AI agents, (ii) ap-
plication domains, and (iii) paradigm-shifting designs. The goal is to provide
a structured synthesis of technical advances without interpretation; human-
centered implications are discussed in Section Discusssion. Findings are pre-
sented in relation to the research questions (RQs) outlined in Section Introduc-
tion.
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4.1 Core Architectures and Components (RQ1)

Modern AI agents integrate perception, reasoning, decision-making, and inter-
action into unified architectures. Figure 1 illustrates a representative modular
design, highlighting memory, planning, tool use, and interaction subsystems.
These components, supported by advances in large language models (LLMs),
reinforcement learning (RL), and symbolic reasoning, enable agents to operate
adaptively in dynamic environments.

Memory Memory modules allow agents to store and retrieve relevant informa-
tion over varying time scales [80, 25]. Short-term memory is constrained by the
model’s context window, while long-term memory can be parametric (encoded
within model weights) or external (e.g., vector databases). Declarative memory
stores explicit facts, whereas procedural memory encodes learned skills. Figure 4
summarizes memory sources, forms, and operations. Memory-enhanced agents
improve task continuity and personalization but face challenges in scalability
and integration with external knowledge sources [72, 90].

Fig. 4. Sources, forms, and operations of memory in LLM-based agents [90].

Planning Planning enables agents to sequence actions toward long-term goals.
Modern approaches combine symbolic planning [20] with subsymbolic methods,
including hierarchical RL [33] and model-based RL. Techniques such as Chain-
of-Thought prompting [79] improve reasoning transparency, while frameworks
like Reflexion [66] and Chain-of-Hindsight [44] incorporate self-reflection and
historical feedback to refine decisions without extensive fine-tuning. Planning
modules benefit from meta-learning [17] and continual learning [7] for cross-task
generalization, refine decisions without extensive fine-tuning [13, 59].

Tools Tool integration extends an agent’s native capabilities [48, 39]. Tools can
include search engines, APIs, code interpreters, and robotics control systems.
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Fig. 5. The Reflexion framework integrates heuristic functions and linguistic feedback
for self-refinement [66].

LLM-based agents dynamically select and invoke tools to perform specialized
tasks. Key challenges include managing hallucinations, planning complexity, and
error propagation, which impact reliability in real-world applications [82].

Perception Perception modules transform sensory input (text, images, audio,
LiDAR) into structured representations. Vision relies on convolutional neural
networks [32, 23] and vision transformers [12], while speech recognition and natu-
ral language understanding leverage transformer-based LLMs [9, 4]. Sensor fusion
combines modalities for more complete environmental understanding.Perception
modules transform sensory input (text, images, audio, LiDAR) into structured
representations [41, 29].

Representation and Abstraction Representation layers encode high-dimensional
data into compact latent vectors using self-supervised and contrastive learn-
ing [6], enabling flexible reasoning and generation [87]. In LLM-based agents,
embeddings capture semantic and syntactic relationships, enabling flexible rea-
soning and generation [83].

Interaction and Communication Interaction modules enable communication
with humans and other agents. Methods include natural language interfaces [9],
emergent communication protocols in multi-agent systems [37], and grounded
language acquisition [3]. Effective interaction design supports coordination and
collaboration.

4.2 Applications of AI Agents (RQ2)

AI agents are deployed in a variety of domains, leveraging the above components
to deliver adaptive, context-aware solutions. The domains reviewed include both



AI Agents for HCI: SLR 11

technical and human-centered applications, with healthcare and education as
primary foci.

Healthcare. Healthcare applications leverage AI agents for diagnostic, assistive,
and decision-support roles [60, 57]. Applications include diagnostic and decision-
support systems [28], patient-facing virtual assistants [14], and AI-assisted robotic
surgery [19]. Advances in data integration and context awareness have improved
clinical decision-making and workflow efficiency [29].

Education. In education, AI agents support personalized learning, adaptive feed-
back, and cognitive impact assessment [62, 58, 56, 63, 61]. AI agents support per-
sonalized learning, adaptive feedback, and team teaching scenarios [36, 77]. Sys-
tems like Mentigo [89] adjust strategies based on student state and problem-
solving stage, enhancing engagement and learning outcomes.

Business and Industry. Enterprise uses span customer service chatbots [64], sup-
ply chain optimization [15], and financial decision-making [43]. AI agents improve
operational efficiency, reduce costs, and enable real-time decision-making.

Science and Research. Automated laboratories [34] and AI research assistants [45]
accelerate discovery in fields from biology to materials science, supporting ex-
periment design, data analysis, and hypothesis generation.

Public Services and Urban Planning. Applications include urban resource man-
agement [40], collaborative decision-making in public administration [2], and
transportation optimization [31].

Entertainment and Creativity. AI agents contribute to game AI, interactive sto-
rytelling [69], and content creation [10, 88], enhancing user engagement through
personalization and adaptive behaviors.

4.3 Paradigm-Shifting Designs (RQ3)

Beyond incremental improvements to components, several architectural innova-
tions redefine agent capabilities.

Cognitive-Inspired Architectures Hybrid models integrate symbolic reason-
ing with neural networks [35, 47], combining the interpretability and composi-
tionality of symbolic approaches with the adaptability of deep learning. These
designs are well-suited for domains requiring precise reasoning and abstraction.

Hierarchical and Modular Approaches Hierarchical control decomposes
complex tasks into subtasks, enabling long-horizon planning [33]. Modular archi-
tectures assign specialized roles to subcomponents, improving scalability, reusabil-
ity, and fault isolation [24, 42]. Integrating these approaches with meta-learning
and transfer learning enhances adaptability across domains.
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5 Discussion

This section synthesizes the findings from our systematic review, highlighting
their implications for human–AI interaction (HCI), offering design recommen-
dations for new researchers entering the field, and outlining a consolidated set of
challenges and future research opportunities. While our Results section provided
a technical overview, the following discussion focuses on interpretive insights
and human-centered considerations, aligning with HCII’s emphasis on usability,
trust, and real-world adoption. Each subsection below ties back to the research
questions (RQs) defined in Section Introduction.

5.1 Synthesis of Findings and HCI Implications (RQ1, RQ2)

Our review revealed that modern AI agents integrate increasingly sophisticated
components—memory, planning, tool use, perception, and interaction modules—into
modular architectures capable of operating in dynamic, open-ended environ-
ments (RQ1). While these advancements have significantly improved adaptabil-
ity and task performance, their deployment in human-facing domains such as
healthcare and education (RQ2) raises distinct design and adoption considera-
tions.

Trust and Transparency. Techniques like Chain-of-Thought reasoning [79]
and Reflexion [66] enhance interpretability by making reasoning steps observable.
In healthcare, this transparency is critical for clinician trust; in education, it
helps instructors validate AI-generated guidance.

Usability and Accessibility. Memory and planning modules support con-
text retention and goal decomposition, enabling smoother interactions. However,
user experience still suffers from unpredictable behavior and complex configura-
tion requirements, which can hinder adoption by non-experts.

Domain-Specific Constraints. In high-stakes applications, domain align-
ment is essential. For example, healthcare agents must integrate with clinical
workflows and comply with privacy regulations, while educational agents must
adapt to diverse learning styles and remain inclusive for neurodiverse populations
and accessible to non-experts [53].

5.2 Design Recommendations for Newcomers (RQ3)

For researchers and practitioners entering AI agent development, we propose the
following recommendations, distilled from the literature and our synthesis of best
practices. These recommendations are intended to help bridge the gap between
the current technical state (RQ1), domain-specific requirements (RQ2), and
identified research gaps (RQ3):

1. Establish a Strong Theoretical Foundation. Begin with core concepts
in reinforcement learning, planning, multi-agent coordination, and decision
theory. Use accessible resources such as Reinforcement Learning: An Intro-
duction [73] and introductory reviews [80] to build conceptual grounding.
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2. Start with Controlled, Measurable Projects. Use simulation environ-
ments like OpenAI Gym, CARLA [5], or PettingZoo [18] for initial projects,
ensuring that evaluation metrics (e.g., task completion rate, convergence
speed, interpretability) are defined from the outset.

3. Leverage Toolkits and Frameworks. Adopt open-source frameworks
(e.g., LangChain, AutoGPT) to rapidly prototype and experiment with agent
capabilities such as tool integration and memory augmentation. Engage with
the open-source community to accelerate learning and maintain awareness
of emerging practices.

4. Iterate with Feedback and Reproducibility in Mind. Implement iter-
ative testing, leveraging user or peer feedback to refine design choices. Share
code and datasets to facilitate reproducibility and community validation.

5. Identify and Address Research Gaps Early. Focus on underexplored in-
tersections such as hybrid symbolic–subsymbolic architectures for improved
interpretability, or continual learning frameworks for long-term adaptability.

5.3 Challenges, Opportunities, and Research Directions (RQ3)

While AI agents have achieved notable milestones, their widespread adoption
in human-centered domains depends on overcoming both technical and social
barriers. The challenges and opportunities identified here directly inform RQ3,
providing a roadmap for future research.

Technical Barriers Robustness and Safety. Agents remain sensitive to dis-
tributional shifts and adversarial perturbations [1], limiting their reliability in
open-world settings. Generalization and Transfer. Cross-domain adaptation
remains limited [91], necessitating advances in meta-learning and domain adap-
tation. Scalability and Efficiency. High compute and energy demands [71]
restrict accessibility, underscoring the need for model compression and efficient
architectures.

HCI-Related Barriers Interpretability. Opaque decision-making processes
hinder trust [11], particularly in regulated domains. Ethical and Social Im-
pacts. Bias, privacy risks, and accountability gaps [26, 22] require transparent
evaluation and regulatory frameworks. Adoption Challenges. Complex inter-
faces and lack of integration with existing workflows slow real-world uptake.

Emerging Research Opportunities Neuroscience-Inspired Mechanisms.
Incorporating predictive coding, synaptic plasticity, and dendritic computation [46]
could yield more stable and interpretable learning. Continual and Interac-
tive Learning. Architectures that learn from ongoing interaction while re-
taining prior knowledge [7] are key to real-world adaptability. Hybrid Sym-
bolic–Subsymbolic Models. Blending structured reasoning with deep learn-
ing [35, 47] may improve transparency without sacrificing performance. Multi-
Agent Governance and Coordination. Protocols for negotiation, resource
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sharing, and conflict resolution [85, 38] will be critical for large-scale, cooperative
agent ecosystems.

5.4 Summary

In sum, the next stage of AI agent research must balance technical innovation
with human-centered design. Robustness, interpretability, and domain alignment
are essential for deployment in sensitive contexts (RQ2), while open-source col-
laboration and reproducibility will ensure that the field progresses in a trans-
parent and inclusive manner (RQ3).

6 Conclusion

AI agents have evolved from narrow, rule-based programs into autonomous sys-
tems capable of perceiving, reasoning, acting, and collaborating across diverse
domains. This review addressed RQ1 by synthesizing developments in core ar-
chitectural components, enabling technologies, and paradigm-shifting designs,
mapping how advances in reinforcement learning, large language models, plan-
ning, and multimodal perception have expanded agent capabilities.

We addressed RQ2 by examining the deployment of AI agents in human-
facing domains—particularly healthcare, education, and public services—highlighting
domain-specific constraints such as workflow integration, regulatory compliance,
and accessibility. These analyses emphasized that real-world adoption depends
equally on meeting human-centered requirements, including trust calibration,
interpretability, and usability.

Finally, RQ3 was addressed by identifying persistent challenges and outlining
future research opportunities, including robustness under distributional shift,
ethical alignment, hybrid symbolic–subsymbolic integration, continual learning,
and multi-agent governance. We emphasized that agents must be interpretable
to their human collaborators, adaptable to diverse user needs, and aligned with
societal values. These priorities are especially critical in sensitive applications,
where usability, safety, and integration with existing workflows determine long-
term impact.

Through interdisciplinary collaboration and sustained attention to human-
centered design, AI agents can progress from experimental prototypes to reliable
partners in research, education, healthcare, and beyond—serving not only as
intelligent tools but as trustworthy collaborators in advancing shared human
goals.
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