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Abstract. Consumer-grade and portable electroencephalography (EEG) devices
have enabled broader adoption of brain-sensing technologies in non-medical human–
computer interaction (HCI), supporting interactive applications beyond traditional
laboratory and clinical settings. However, the literature remains fragmented across
domains, device settings, and machine learning pipelines, making it difficult to
compare methods and assess real-world feasibility. This paper presents a PRISMA-
guided systematic review of recent studies on low-cost and wearable EEG in non-
medical HCI. We synthesize the most common application domains, including in-
teractive control and gaming, affective computing, workload and user experience
evaluation, and emerging XR/VR-related contexts. We further analyze end-to-
end EEG–ML pipelines, covering acquisition protocols, preprocessing and arti-
fact handling, representation learning trends, and evaluation practices, highlight-
ing the ongoing methodological shift from traditional feature-based approaches
toward deep learning and attention-based models (including Transformer-style
architectures). Finally, we summarize recurring technical and human-centered
challenges reported in the literature, including noise and motion artifacts, limited
generalization, reproducibility gaps, usability and comfort constraints, and pri-
vacy and consent considerations. Based on these findings, we provide actionable
best-practice recommendations to support more transparent reporting, stronger
evaluation, and robust deployment of consumer EEG-enabled HCI systems.

Keywords: consumer-grade EEG · wearable EEG · low-cost EEG · human–
computer interaction · deep learning · brain–computer interface · systematic re-
view

1 Introduction

Consumer-grade and portable EEG technologies have rapidly evolved from specialized
neurotechnology into practical sensing tools for HCI research. In recent years, low-cost
headsets such as Muse, Emotiv, NeuroSky, and OpenBCI—together with increasingly
portable dry-electrode systems—have made it possible to collect neural signals beyond
clinical and tightly controlled laboratory settings. As a result, EEG is now being ex-
plored across a wide range of non-medical interactive contexts, including interactive
control and gaming, affective computing, attention and engagement monitoring, neu-
roadaptive learning, and cognitive workload evaluation. These developments increas-
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ingly intersect with Extended Reality (XR) and spatial computing, where real-time user-
state inference can enable more adaptive, immersive, and personalized experiences. In
parallel, a growing body of recent work has explored EEG-enabled interactive sys-
tems using consumer-grade or portable devices, including EEG-controlled gameplay
and motor imagery interfaces, real-time personalization pipelines, and practical end-to-
end EEG–ML system design considerations [45, 1, 46, 32, 8, 52, 49].

Despite this rapid progress, the research landscape remains difficult to compare and
build upon. Studies frequently adopt different devices, recording setups, preprocess-
ing pipelines, and evaluation protocols. While performance metrics (e.g., accuracy and
F1-score) are commonly reported, critical human-centered factors—such as comfort,
usability, accessibility, and privacy—are not consistently discussed. This fragmentation
makes it difficult to determine what findings are transferable across application domains
and what technical and design practices are necessary to build robust EEG-enabled in-
teractive systems for real-world deployment.

To address these gaps, this paper presents a PRISMA-guided systematic review of
studies that use consumer-grade and portable EEG for machine learning–driven, non-
medical HCI applications. Rather than only summarizing reported decoding perfor-
mance, we synthesize evidence across the full pipeline—from EEG hardware choices
and experimental paradigms, to preprocessing and artifact handling, to modeling de-
cisions (including deep learning and emerging Transformer/attention-based methods),
and finally to evaluation practices and human-centered outcomes. This review also aims
to connect technical progress with actionable design implications: we examine not only
which approaches are most common, but also where current systems break down in
real-world use (e.g., robustness to noise and motion artifacts, cross-user generalization,
usability and comfort constraints, and reproducibility of reported results). Based on
these findings, we propose an integrated framework that organizes the literature into ac-
tionable design and implementation considerations for future EEG-enabled interactive
systems, including emerging XR/spatial computing scenarios.

Research Questions.

– RQ1 (Application Domains): What non-medical HCI application domains most
frequently use consumer-grade and portable EEG (e.g., gaming/BCI interaction,
affective computing, workload/UX evaluation, and emerging XR/VR contexts), and
what interaction goals do these systems support?

– RQ2 (Methodologies and ML Pipeline): What end-to-end EEG–ML pipelines are
commonly adopted in this literature (acquisition protocols, preprocessing/artifact
handling, feature or representation learning, and evaluation setup), and how are
model families distributed (traditional ML, deep learning, Transformer- and attention-
based, and hybrid approaches)?

– RQ3 (Challenges and Evaluation Considerations): What recurring technical and
human-centered challenges are reported (e.g., noise/artifacts, generalization, repro-
ducibility, usability/comfort, privacy and consent), and what evaluation practices
are used to assess real-world feasibility and user-centered deployment?
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Table 1. Prior reviews vs. this review (summary).

Ref. Focus Main gap
[42] General BCI survey Not HCI-specific
[39] Consumer EEG sensors Limited deploy-

ment focus
[37] Consumer EEG research Limited pipeline

synthesis
[12] Wearable EEG systems Limited HCI fea-

sibility metrics”
[43] Consumer EEG + games Narrow domain
[47] MI directional control Narrow task fo-

cus
[40] Consent practices in HCI Not EEG-

specific
[17] Risks of BCI use Limited HCI de-

sign guidance
This review Non-medical HCI +

EEG–ML
Integrated frame-
work

2 Related Work

2.1 Reviews of Consumer-Grade EEG in Non-Medical HCI

Recent systematic reviews and scoping analyses have documented the rapid expansion
of consumer-grade EEG research across non-medical HCI domains. Värbu et al. [42]
provide a broad review of EEG-based BCI research from 2009 to 2019, highlighting the
widespread adoption of accessible headsets such as Emotiv EPOC and NeuroSky Mind-
Wave for applications including emotion recognition, attention monitoring, and fatigue
detection. Subsequent reviews similarly describe a gradual shift away from laboratory-
grade EEG systems toward more portable and deployable setups, often coupled with
hybrid AI–EEG approaches better suited for real-world interaction contexts [37, 13,
51].

Alongside this shift, usability and multimodal interaction considerations have re-
ceived increasing attention. Several surveys emphasize that deployment feasibility, user
comfort, and integration with other sensing modalities are becoming as important as
classification accuracy in consumer EEG studies [37, 54, 27, 26, 30, 33, 34]. This trend
is particularly evident in emerging work that situates EEG within immersive VR and
XR environments, where real-time interaction and user experience constraints play a
central role [23]. Related research has also examined low-cost EEG headsets in applied
settings such as drowsiness detection, drawing attention to practical limitations related
to signal reliability, wearability, and long-term use outside controlled laboratory envi-
ronments [21].

Beyond application coverage, recent work has critically examined how EEG studies
are conducted and reported within HCI. Putze et al. [29] analyze experimental practices
and reporting challenges in HCI studies using brain signals, highlighting barriers to
reproducibility, reuse, and cross-study comparison. Complementing this perspective,
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Kosch et al. [19] survey methods for measuring cognitive workload in HCI, provid-
ing broader context for understanding how EEG-based workload assessment fits within
established evaluation practices. More broadly, informed consent, transparency, and re-
sponsible human-subject research practices are increasingly emphasized as the commu-
nity scales up physiological and brain-sensing studies [40]. In addition, emerging best-
practice efforts such as PhysioCHI highlight open science workflows, documentation
standards, and reproducibility guidance for integrating physiological signals into HCI
systems research [5]. From a risk and governance perspective, systematic analyses fur-
ther identify recurring concerns in BCI research, including privacy, autonomy, security,
and informed consent [17], as well as ethical challenges driven by commercialization
and consumer deployment contexts [9].

In addition to gaming-oriented BCIs, consumer and portable EEG have been ex-
plored for broader non-medical HCI goals such as cognitive state detection and learning-
related user-state inference. For example, EEG has been used to distinguish interaction
modalities under the same task demand (e.g., writing vs. typing), to identify attention
lapses such as daydreaming, and to support learning analytics and personalized feed-
back systems [35, 44, 36, 31].

2.2 Device Evolution and Practical Wearability

Beyond application-oriented surveys, device-centered reviews help explain why con-
sumer and portable EEG systems have become increasingly viable for interactive sys-
tems research. Sawangjai et al. [39] review consumer-grade EEG sensors as research
tools and summarize key strengths and limitations that affect data quality, including
electrode configuration, noise susceptibility, and ease of setup. More recently, He et
al. [12] survey the diversity and suitability of wearable and wireless EEG systems,
providing a comparative perspective on portability, design trade-offs, and intended use
cases.

Although some wearable EEG reviews focus primarily on medical applications,
they nevertheless offer useful insights into hardware maturity and user-facing con-
straints that also carry over to non-medical HCI contexts [50, 3]. Complementary evalu-
ation studies further assess consumer-device fidelity and accessibility in practice, high-
lighting variability in signal quality and usability across devices [22]. Beyond hardware
capabilities alone, several studies emphasize the importance of systematically evalu-
ating usability and user experience when deploying consumer EEG devices. Cano et
al. [4] demonstrate that low-cost EEG signals can support coarse-grained assessment
of user experience, while Gaspar-Figueiredo et al. [10] report findings from a replica-
tion study on measuring user experience in adaptive interfaces using EEG, underscoring
ongoing challenges related to reliability and consistency. Arias-Cabarcos et al. [2] fur-
ther examine trade-offs between performance, user burden, and practical deployment
in EEG-based authentication systems. Looking forward, emerging form factors such as
ear-EEG have been proposed as promising directions to improve comfort and social ac-
ceptability for everyday use, while maintaining sufficient signal quality for interactive
applications [14].
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2.3 Interactive Control and Gaming as Testbeds

Gaming has long served as an influential testbed for consumer EEG research, in part be-
cause it naturally supports closed-loop interaction and repeated user engagement under
realistic constraints. Vasiljevic et al. [43] present a systematic literature review of BCI
games based on consumer-grade EEG devices, documenting a wide range of interac-
tion paradigms and evaluation practices. Similarly, Xie et al. [47] review consumer and
portable EEG applications for directional game control via motor imagery, reinforcing
the relevance of gaming-oriented HCI scenarios for studying real-time feasibility, cal-
ibration effort, and user experience requirements. More recent surveys further reflect
growing interest in neurotechnology-enabled gaming, including visual evoked potential
(VEP)–based BCI approaches, which expand the range of interaction techniques ex-
plored in entertainment contexts [15]. In parallel, emerging work emphasizes the need
for user-centric evaluation protocols that assess not only decoding performance but also
real-world usability in immersive AR/XR contexts [7].

Beyond survey-level evidence, recent research has increasingly focused on practical
EEG-controlled game implementations and evaluation of real-time feasibility. Work
on motor imagery controllers and consumer-grade EEG gameplay systems highlights
key HCI considerations such as calibration burden, robustness to noise, feedback loop
design, and personalization for usability [45, 8, 32].

Overall, gaming-oriented studies should be interpreted as one representative HCI
domain among several, but they remain valuable for evaluating closed-loop interaction,
real-time constraints, and user experience considerations under realistic usage condi-
tions.

2.4 Methodological Shifts in EEG–ML Pipelines

From a methodological perspective, prior work frequently compares traditional classi-
fiers such as SVM and LDA with deep learning approaches including CNNs, DNNs,
and hybrid models [6, 38]. While deep models often report improved predictive per-
formance, many studies also note persistent sensitivity to artifacts, noise, and subject
variability, particularly in consumer-grade acquisition settings. These challenges have
motivated increasing interest in strategies such as transfer learning and domain adapta-
tion to improve generalization and enable personalization in real-world HCI systems.
Recent neuroadaptive XR systems further demonstrate the feasibility of using real-time
EEG feedback to support attention enhancement and workload reduction in immersive
environments [20].

More recent work has increasingly adopted attention mechanisms and Transformer-
based architectures to explicitly model spatial and temporal dependencies in EEG sig-
nals. Attention-based convolutional and Transformer models have reported improved
performance in emotion recognition by learning channel-wise and temporal importance
patterns [11, 48]. Related studies further demonstrate that self-attention mechanisms
may enhance EEG representation learning by capturing inter-channel relationships and
long-range temporal dynamics [41, 25]. These modeling strategies are particularly well
suited to consumer-grade EEG, where signal nonstationarity and noise make robust rep-
resentation learning critical for downstream HCI tasks such as affective computing and
user-state estimation.
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Fig. 1. PRISMA flow diagram summarizing the literature selection process.

This shift is also reflected in recent attention-based and Transformer-hybrid EEG
modeling studies and review efforts, which emphasize improved spatial–temporal rep-
resentation learning and robustness under noisy or low-channel acquisition settings [18,
53, 49].

3 Method

This review follows the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) framework [28] to ensure methodological transparency and repro-
ducibility. A structured literature search was conducted across five databases—Google
Scholar, IEEE Xplore, PubMed, ACM Digital Library, and Web of Science—using
Boolean combinations of key concepts related to low-cost and wearable EEG devices,
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Table 2. Inclusion and exclusion criteria applied during PRISMA screening for studies using
consumer-grade EEG in non-medical HCI applications.

Inclusion / Exclusion Criteria Include?
Employs consumer-grade or portable EEG de-
vices (e.g., Muse, Emotiv, OpenBCI, NeuroSky)
in non-medical interactive or HCI-relevant con-
texts

Yes

Uses machine learning / deep learning for classifi-
cation, prediction, or adaptive feedback (including
neuroadaptive systems)

Yes

Addresses HCI application domains such as af-
fective computing, gaming, attention/engagement
monitoring, or cognitive workload assessment

Yes

Reports sufficient methodological details (EEG
device, protocol, model/evaluation) to support
transparency and interpretation

Yes

Includes usability, accessibility, reproducibil-
ity/reporting practices, or ethical/privacy discus-
sion relevant to EEG-enabled interactive systems

Yes

Written in English and published as peer-reviewed
journal or full-length conference paper (2015–
2026)

Yes

Focuses on clinical diagnosis, medical rehabilita-
tion, invasive EEG/neuroimaging, or clinical treat-
ment outcomes as the primary objective

No

Lacks EEG hardware description, study design
clarity, or sufficient reproducibility/reporting de-
tail

No

non-medical HCI applications, and machine learning–based analysis. The search tar-
geted peer-reviewed publications between 2015 and 2026.

Studies were screened according to the inclusion and exclusion criteria summarized
in Table 2. In total, 303 records were identified across the selected databases. After
removing duplicates (n = 69), 234 records remained for title and abstract screening, of
which 102 were excluded. The remaining 132 reports were sought for retrieval, and 59
full-text articles were successfully assessed for eligibility after excluding non-retrieved
reports (n = 73). Following full-text screening, 35 studies were included in the final
synthesis. The complete selection process is summarized in the PRISMA flow diagram
in Figure 1.

For each included study, we coded key technical and human-centered dimensions,
including EEG device type, application domain, acquisition protocol, preprocessing and
artifact handling, feature/representation learning strategy, machine learning model fam-
ily, and evaluation metrics. In addition to predictive performance (e.g., accuracy and
F1-score), we recorded qualitative factors relevant to HCI deployment such as reported
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Table 3. Keyword groups and qualitative frequency in the PRISMA search strategy for consumer-
grade EEG studies in non-medical HCI.

Category Example keywords Freq.

Consumer EEG Devices Muse; Emotiv; OpenBCI; NeuroSky; low-cost EEG; wear-
able EEG headset

H

Application Domains affective computing; adaptive gaming; attention tracking;
cognitive workload; engagement; neuroadaptive interface

H

Immersive Interaction VR; AR; XR; extended reality; spatial computing; immer-
sive interface

M

Machine Learning SVM; LDA; CNN; RNN; transformer; deep learning; hy-
brid model; domain adaptation

M–H

Signal Processing band-power; filtering; ICA; artifact removal; feature extrac-
tion; preprocessing pipeline

M

Human-Centered Evaluation usability; comfort; accessibility; user experience; real-
world evaluation; protocol

M

Ethics & Governance informed consent; privacy; ethics; neuroprivacy; trust; risk M
Performance Metrics accuracy; F1-score; precision; recall; cross-subject evalua-

tion; generalization
M

usability and comfort, accessibility considerations, study reporting completeness, and
privacy/ethics implications.

4 Results

This section reports findings from the PRISMA-included literature, organized by the
three research questions. Following HCII conventions, results are presented as descrip-
tive patterns across application domains (RQ1), methodological and modeling choices
(RQ2), and recurring challenges and evaluation considerations (RQ3). Summary dis-
tributions are provided in Tables 4–7, with Table 6 highlighting a focused subset of
empirical EEG-based UX evaluation studies.
RQ1 (Application Domains). Across the included set, consumer-grade and portable
EEG research in non-medical HCI spans several recurring application clusters (Table 4).
Prominently represented domains include immersive XR/VR-oriented interaction and
evaluation [27], gaming and BCI control paradigms [38], and affective computing tasks
such as emotion recognition [48]. In addition to application-driven studies, a substan-
tial portion of the literature is review- or survey-oriented, synthesizing research trends,
devices, and methodological practices to support more systematic development in the
field [37, 51, 54]. Device-focused work further contextualizes feasibility constraints by
emphasizing portability and wearability trends, which influence long-term adoption and
deployment in everyday settings [50, 39].
RQ2 (Methodologies and ML Pipeline). Methodological patterns reported in the in-
cluded papers emphasize end-to-end pipeline design rather than model choice alone
(Table 5). Traditional machine learning approaches remain common, reflecting the con-
tinued use of feature-based baselines and interpretable pipelines in consumer EEG set-
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Table 4. RQ1 summary (application domains and study themes) based on included studies.

Domain Typical goal (3–5 keywords) Example papers

XR / VR EEG interaction hands-free control; adapta-
tion; immersive feedback

[27]

Gaming / BCI control real-time control; engage-
ment; feedback loop

[38]

Affective computing / emotion emotion decoding; affective
HCI; state modeling

[48]

Meta / research landscape domain mapping; devices
used; trends

[37, 51]

Wearable EEG devices (context) wearability; portability; de-
vice evolution

[50]

Reproducibility / reporting experiment reporting; trans-
parency; reuse

[29]

Consumer EEG adoption device usage; research cate-
gories; validation

[39, 54]

tings [39]. Deep learning is frequently reported as a dominant methodological trend
in recent consumer EEG work, often motivated by the need for representation learning
under noisy and low-channel acquisition conditions [38, 51]. Transformer and attention-
based modeling appears explicitly in recent EEG decoding work, particularly for mod-
eling temporal dependencies and channel-wise relevance [48]. In parallel, survey and
best-practice papers highlight that methodological rigor depends on acquisition sta-
bility, preprocessing transparency, and evaluation consistency, supporting the need for
standardized EEG–ML reporting practices in non-medical HCI research [29, 54].

Table 5. RQ2 summary (methodology and ML lens) from included studies.

Model group What it emphasizes (3–5 key-
words)

Example papers

Traditional ML feature extraction; baseline
pipelines; comparability

[39]

Deep Learning representation learning; robust-
ness; classification gains

[38, 51]

Transformer & attention multi-dim attention; channel
weighting; temporal deps

[48]

Hybrid architectures CNN-based encoders; fusion;
multi-stage pipelines

[48, 51]

Pipeline / method standards reporting structure; dataset meta-
data; reproducibility

[29, 54]

RQ3 (Challenges, Evaluation, and Design Guidance). Across the included studies,
the most consistently reported challenges relate to deployment feasibility, evaluation
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Table 6. Empirical evidence for EEG-based UX / adaptive interface evaluation (subset).

Ref. Setting Result keywords

[4] UX assessment low-cost EEG; UX feasible
[10] Adaptive UI (replication) EEG UX metrics; replication

completeness, and reproducibility (Table 7). Several papers emphasize that heteroge-
neous reporting practices and incomplete methodological descriptions limit reuse and
cross-study comparison, particularly in HCI contexts where experimental design varies
substantially across tasks and settings [29]. Usability and multimodal evaluation gaps
are repeatedly observed, reflecting that performance reporting alone is insufficient for
consumer-facing deployments [54, 37]. For XR/VR-integrated BCI systems, the lit-
erature highlights additional constraints such as comfort, integration complexity, and
safety considerations in immersive interaction settings [27]. Device limitations, includ-
ing electrode stability, noise susceptibility, and form-factor constraints, remain com-
mon factors affecting reliability and generalization in consumer-grade EEG acquisi-
tion [39, 50, 38]. Empirical UX-oriented evidence, though less consistently reported,
demonstrates practical feasibility for using EEG signals as evaluation cues in adaptive
interface and UX assessment scenarios [4, 10].

Table 7. RQ3 summary (challenges, evaluation, ethics, and reproducibility) reported in included
studies

Paper Risk / ethics dimension Main concern (3–5 key-
words)

Suggested mitigation

[29] reproducibility; trans-
parency

missing details; heterogene-
ity; reuse barrier

reporting checklist; reuse
guidance

[54] usability; multimodal evalu-
ation

deployment gaps; limited
validation

HCI evaluation; multimodal
protocols

[27] XR usability; deployment
validity

integration issues;
safety/comfort limits

system evaluation; multi-
modal BCI

[37] usability; adoption device constraints; feasibil-
ity gaps

system-level metrics; UX
reporting

[39] device reliability noise; electrodes; fidelity
limits

device-aware interpretation

[38] generalization; maturity uncontrolled envs; bench-
mark gaps

datasets; standardized
pipelines

[50] wearability; practicality comfort limits; form factor
constraints

wearable design; long-term
use

[48] model interpretability
(weak)

attention reliance; evalua-
tion scope

ablation; robust evaluation

[51] methodological drift inconsistent protocols; com-
parability

taxonomy; unified bench-
marks
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Summary of Key Findings. Overall, the included literature indicates that non-medical
consumer EEG research in HCI is concentrated in a small set of application areas, most
notably XR/VR interaction and evaluation, gaming-oriented BCI control, and affective
computing [27, 38, 48]. Methodologically, the field exhibits a clear shift toward deep
and attention-based modeling while maintaining feature-based baselines in low-cost
settings [39, 38, 48]. Finally, reproducibility, usability reporting, and device reliability
constraints are recurrent cross-cutting themes, motivating the need for standardized pro-
tocols that integrate technical performance reporting with human-centered evaluation
measures [29, 54, 37].

5 Discussion

This review synthesized 35 PRISMA-included studies on consumer-grade and portable
EEG for non-medical HCI applications, with emphasis on application domains (RQ1),
methodology and modeling pipelines (RQ2), and recurring challenges affecting real-
world feasibility (RQ3). While the Results section summarized descriptive patterns
across domains and model families (Tables 4–7), the goal of this Discussion is to inter-
pret what these patterns imply for future research and for building robust EEG-enabled
interactive systems. In particular, we highlight (i) why attention-based and hybrid archi-
tectures appear increasingly effective in consumer EEG settings, (ii) how EEG-enabled
HCI is being shaped by XR/spatial computing constraints, and (iii) what practical best
practices can be recommended based on cross-study evidence and common failure
modes.

5.1 Interpreting the shift toward deep and Transformer-based models

A consistent trend across the reviewed literature is the methodological shift from tradi-
tional classifiers (e.g., SVM/LDA with hand-crafted features) toward deep learning and
attention-based architectures (Table 5). This shift is not simply a reflection of broader
AI trends; rather, it aligns with several structural characteristics of consumer-grade EEG
data and HCI deployment contexts.

First, consumer EEG signals are often low-channel, noisy, and non-stationary due
to device form-factor constraints (e.g., dry electrodes, wireless headsets, variable place-
ment and impedance). In such settings, representation learning becomes a practical ad-
vantage: deep models can learn task-relevant patterns directly from raw or minimally
processed signals, reducing dependence on hand-crafted features that may not gener-
alize well across devices or contexts. Second, attention mechanisms and Transformer-
based architectures offer a principled way to model both temporal dependencies and
channel-wise relevance, which is particularly important when signal quality varies over
time and across sensors. For example, attention can focus on informative segments of
an EEG window while down-weighting noisy intervals or unreliable channels, yielding
more robust decoding under real-world conditions.

Third, in many HCI scenarios, the primary objective is not offline accuracy alone but
robust, repeatable decoding under imperfect conditions (e.g., user movement, multitask-
ing, and limited calibration). Hybrid architectures that combine convolutional encoders
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with attention layers can capture local EEG structure (e.g., frequency-specific patterns)
while still supporting long-range temporal modeling and flexible weighting. Therefore,
the emerging evidence suggests that Transformer-based and hybrid architectures may
be outperforming classical SVM pipelines in this context because they better match
the underlying data properties and the robustness constraints of deployable interactive
systems.

At the same time, the review indicates that this trend should be interpreted cau-
tiously. Across the included studies, benchmarking practices remain heterogeneous, and
deep models can be sensitive to evaluation design. In particular, within-subject evalua-
tion may overestimate real-world performance, and reporting often lacks enough detail
to fully assess generalization and calibration burden. For this reason, deep learning and
attention-based models should be encouraged, but not treated as universally superior
without stronger evaluation consistency and cross-user validation (Table 7).

Recent hybrid EEG architectures combining convolutional encoders with atten-
tion/Transformer modules further support this direction, suggesting that flexible spatial–
temporal weighting can improve representation learning and downstream robustness in
real-time EEG-enabled HCI settings [53, 18, 49, 24].

5.2 Implications for XR and spatial computing

One of the most important emerging developments in this research area is the growing
intersection between consumer EEG and XR/spatial computing systems (Table 4). XR
environments amplify both the opportunities and the practical constraints of EEG-based
interaction. On the opportunity side, immersive environments provide rich closed-loop
contexts where EEG can support adaptive feedback, engagement measurement, workload-
aware interfaces, and affective personalization. On the constraint side, XR introduces
additional motion artifacts, comfort requirements, latency sensitivity, and safety con-
siderations. These constraints make EEG deployment more complex than in traditional
desktop or seated laboratory settings.

This also motivates multimodal pipelines that combine EEG with complementary
sensing such as eye tracking, where recent Transformer-based multi-task models sug-
gest promising directions for stable attention and gaze inference in interactive systems
[24, 16].

From an HCI systems perspective, XR-driven adoption emphasizes the need to treat
EEG not as an isolated classifier input, but as one component within an integrated in-
teractive pipeline. This includes (i) headset and device selection matched to motion and
comfort constraints, (ii) artifact-aware preprocessing strategies that explicitly account
for movement-related noise, and (iii) evaluation protocols that go beyond performance
reporting to include usability and user burden. The reviewed literature also suggests
that XR scenarios may benefit disproportionately from multimodal sensing (e.g., EEG
combined with eye tracking or other physiological signals), because redundancy across
modalities can stabilize inference when one signal source becomes unreliable. There-
fore, XR/spatial computing is not merely an additional application domain; it is likely
to be a driver that shapes best practices for consumer EEG deployment across HCI more
broadly.
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Table 8. Recommended best practices for low-cost and wearable EEG in non-medical HCI sys-
tems (interpretive synthesis).

Pipeline stage Best practice Rationale and supporting evi-
dence

Study design &
tasks

Use task paradigms aligned with
the target interaction (e.g., affect,
workload, or control) and report
task timing clearly

HCI EEG studies remain difficult to
compare due to heterogeneous pro-
tocols; clearer design reporting im-
proves reuse and cross-study inter-
pretation [29].

Device selec-
tion

Match headset choice to interac-
tion constraints (channels, elec-
trode type, wear time, mobility)
and explicitly discuss trade-offs

Consumer-grade devices vary in fi-
delity and wearability; device-aware
interpretation is necessary for robust
conclusions [39, 12].

Acquisition
setup

Standardize sampling rate, ref-
erence, montage, and environ-
mental conditions; report headset
placement and calibration time

Signal quality is sensitive to elec-
trode stability and setup variability,
especially outside controlled labora-
tory settings [22, 39].

Preprocessing
& artifact han-
dling

Use transparent preprocessing
(filter bands, epoching, artifact
strategy) and consider motion ar-
tifacts for XR/VR scenarios

Noise and motion artifacts are per-
sistent barriers in real-world deploy-
ment; XR adds additional artifact
sources [27, 29].

Modeling strat-
egy

Prefer deep learning / attention-
based models when data scale al-
lows; keep traditional ML base-
lines for comparability

Recent literature shows increasing
shift from SVM/LDA to deep and
Transformer-based architectures,
potentially due to improved repre-
sentation learning under noise[48,
38].

Evaluation pro-
tocol

Include cross-subject evaluation
or domain shift testing; report
calibration burden and real-time
constraints when relevant

Many systems fail in generalization
and real-world feasibility; evalua-
tion beyond within-subject accuracy
is critical [54, 29, 45, 1].

Human-
centered
outcomes

Measure usability, comfort, and
user experience alongside perfor-
mance; report dropouts and user
burden

Performance-only reporting is insuf-
ficient for HCI adoption; usability
evidence remains inconsistent across
studies [37, 10].

Reproducibility
& reporting

Use reporting checklists, share
code when possible, and include
complete dataset/protocol meta-
data

Incomplete reporting limits repro-
ducibility and reuse; stronger doc-
umentation is emphasized in HCI
brain-signal research [29, 5].

Ethics & pri-
vacy

Include consent practices and
discuss neuroprivacy risks, espe-
cially for consumer deployments

Consumer neurotechnology raises
privacy and autonomy risks; ethical
reporting is increasingly required in
HCI [17, 40].
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5.3 Best practices and actionable guidance for EEG-enabled HCI systems

A key outcome of this review is the identification of recurring technical and human-
centered barriers that limit reproducibility and deployment feasibility, including incom-
plete reporting, inconsistent evaluation protocols, device reliability constraints, and lim-
ited usability/comfort assessment (Table 7). These issues collectively explain why the
field remains fragmented despite rapid growth. To address these gaps, we synthesize a
set of recommended best practices across the end-to-end pipeline, summarized in Ta-
ble 8. Rather than proposing a new algorithm, this table provides practical guidance
intended to improve comparability, reuse, and robustness of EEG-enabled interactive
systems.

Several themes in Table 8 warrant emphasis. First, methodological transparency
is a prerequisite for scientific progress in this space: authors should consistently re-
port acquisition protocols, headset placement, calibration duration, filtering/epoching
details, and artifact-handling methods. Second, evaluation should be aligned with in-
tended deployment. If a system is intended for consumer use, studies should report
cross-user generalization, calibration burden, and real-time constraints. Third, HCI out-
comes must be treated as first-class evidence, not secondary to decoding performance.
Usability, comfort, dropout rates, and user burden should be reported alongside accu-
racy and F1-score, especially for long-duration or immersive applications.

Finally, the results also suggest that ethics and privacy considerations are not op-
tional for consumer neurotechnology; they are central to responsible deployment. As
EEG moves toward everyday settings, neuroprivacy concerns, consent practices, and
risk mitigation should be explicitly discussed, particularly when systems attempt to in-
fer affective or cognitive states.

5.4 Limitations

This review has several limitations. First, despite the PRISMA-guided screening pro-
cess, the included literature remains heterogeneous in terms of tasks, devices, and eval-
uation metrics, which limits quantitative comparison across studies. Second, while this
work covers papers published between 2015 and 2026, the research landscape is rapidly
evolving, and newly emerging XR-integrated systems may not yet be fully represented.
Third, because many papers do not report complete methodological details, the syn-
thesis may be influenced by reporting bias, where better-documented studies are more
likely to be included and interpreted.

5.5 Future work

Future research should prioritize stronger benchmarking and reproducibility standards
for consumer EEG in HCI. This includes shared datasets that reflect realistic consumer
constraints, standardized evaluation protocols emphasizing cross-user generalization,
and reporting checklists that capture both technical pipeline details and human-centered
outcomes. In addition, XR and spatial computing represent a high-impact direction
where EEG-enabled systems can deliver practical value, but only if developers ad-
dress motion artifacts, comfort, and ethical concerns in real deployment contexts. More
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broadly, the field would benefit from designing systems that integrate EEG into multi-
modal pipelines and from adopting evaluation frameworks that jointly measure perfor-
mance, usability, and real-world feasibility (Table 8).

6 Conclusion

This PRISMA-guided systematic review synthesized 35 studies (2015–2026) on low-
cost and wearable EEG in non-medical HCI, with emphasis on end-to-end machine
learning pipelines and real-world feasibility. Overall, the literature demonstrates rapid
growth and broadening adoption, but remains fragmented in methodology, reporting
practices, and evaluation rigor.

For RQ1 (Application Domains), low-cost wearable EEG research in HCI com-
monly appears in application areas such as gaming and BCI control, affective comput-
ing, and cognitive workload/UX evaluation, with increasing intersection with XR/VR
and spatial computing. Across these domains, EEG is primarily used to support hands-
free interaction, user-state inference, neuroadaptive feedback, and experience-aware
personalization. For RQ2 (Methodologies and ML Pipeline), included studies com-
monly follow a pipeline of device-specific acquisition, preprocessing and artifact han-
dling, feature extraction or representation learning, and supervised classification and
evaluation. A clear methodological shift is observed from traditional ML pipelines (e.g.,
SVM/LDA with hand-crafted features) toward deep learning and attention-based mod-
els (including Transformer-style architectures), including hybrid approaches. For RQ3
(Challenges and Evaluation Considerations), recurring barriers include noise and mo-
tion artifacts, limited cross-user generalization, inconsistent reporting and reproducibil-
ity, and under-reporting of usability and comfort outcomes, alongside growing concerns
related to consent, privacy, and neuroethical risks in consumer deployment contexts.

Based on these findings, progress in EEG-enabled HCI should be evaluated not only
by decoding performance but also by deployment readiness, user burden, and ethical re-
sponsibility. The recommended best practices summarized in Table 8 provide actionable
guidance to strengthen methodological transparency, evaluation validity, and human-
centered feasibility for future EEG-enabled interactive systems, including emerging
XR/spatial computing scenarios.
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