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ABSTRACT
In this paper, we utilized a systematic literature review scheme to
understand the current methods utilized to compress multichannel
Electroencephalography (EEG) signals and how these techniques
could be applied to the novel EEGEyeNet dataset. Our review will
shed light on the current trends within the EEG data compression
field and simplify the explanation of these techniques along with
how to utilize them. By compiling a comprehensive list of the most
recent and relevant research on this topic, we hope to provide a
solid foundation for understanding the most up-to-date EEG data
compression standards, their capabilities, and how these techniques
compare to each other in terms of performance. We hope to expand
the knowledge and accessibility of EEG data compression methods
to broaden their utilization in EEG analysis.
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1 INTRODUCTION
Electroencephalography (EEG) has been an extremely popular
method for extracting and interpreting neurological information
due to its non-invasive procedure. Additionally, its high temporal
resolution makes it especially useful for real-time brain analytics
often used in medical diagnostics. However, high temporal reso-
lution, combined with multiple channels, can make the storage,
transmission, and processing of EEG signals difficult, especially
when working with large datasets such as EEGEyeNet, a high-
quality EEG and eye-tracking dataset storing hours of recordings
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across a vast number of participants [19]. As such, improving the
computational efficiency of EEG signal processing requires a deep
understanding of the compression techniques applicable to EEG.

To address this, our paper provides a systematic review of the
current literature, specifically focusing on techniques to compress
multichannel EEG data, highlighting the recent trends within this
domain. By compiling these findings, we aim to facilitate a deeper
understanding of the current state of EEG data compression, eval-
uate the various techniques within the space, and highlight the
potential applications of these methods for other datasets, specifi-
cally EEGEyeNet.

1.1 Research Questions
In this paper, we address the following research questions to better
understand and evaluate the various trends within the current EEG
data compression research field:

(1) What are the most effective and widely adopted techniques
for compressing multichannel EEG data, according to the
latest research?

(2) How do these EEG data compression techniques compare
in terms of efficiency, accuracy, computational cost, and
applicability to hardware implementations?

(3) How can these identified methods be effectively applied to
the EEGEyeNet dataset to optimize performance and main-
tain data integrity? How can they address challenges related
to big data acquisition and processing in healthcare applica-
tions?

By addressing these research questions, this paper aims to ex-
plain and evaluate the current methods used to compress EEG
data, highlight the most promising techniques for large-scale, mul-
tichannel EEG datasets like EEGEyeNet, and equip the data science

Abbreviation Definition

CR Compression Ratio
PRD Percentage Root Mean Square Difference
EEG Electroencephalography
ECG Electrocardiography
CS Compressed Sensing

DWT Discrete Wavelet Transform
DCT Discrete Cosine Transform
SPIHT Set Partitioning in Hierarchical Trees
GOP Group of Pictures
Table 1: List of Frequently Used Acronyms
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community with resource-conscious solutions for EEG signal anal-
ysis. For clarity, Table 1 contains commonly used acronyms in this
paper and their definitions.

2 RELATEDWORK
Many previous review papers present key insights into the trends
in EEG data compression techniques [3, 6, 7, 11, 20, 23, 29–36, 40,
41]. While these literature reviews provide a solid foundation for
established techniques, rapid advancements in the field make it
imperative to reevaluate the most up-to-date EEG compression
techniques to ensure a deeper understanding of current trends in
the domain.

Existing literature on EEG data compression techniques tends
to be narrow in the compression techniques they evaluate, often
examining a specific algorithm or class of algorithms. This can
potentially make it difficult to comprehensively evaluate the per-
formance of all methods and accurately weigh the benefits and
tradeoffs of each. Additionally, some literature reviews broaden
their analysis to other types of physiological signals, such as Elec-
trocardiography (ECG) signals. While EEG and ECG signals are
similar, they both possess intrinsic patterns that may influence
which compression techniques are most effective.

The paper "Trends in Compressive Sensing for EEG Signal Pro-
cessing Applications" by Gurve et al. [12] explores the integration
of Compressive Sensing (CS) with neural engineering, specifically
focusing on EEG signals for Brain-Computer Interfaces (BCIs). CS
offers fast and energy-saving solutions for handling large volumes
of neurological data. Key points from the review include the neces-
sity of CS in EEG due to the growing challenges in big data acquisi-
tion and processing in healthcare and the potential of EEG signals
for BCIs. The paper also examines current practices, scientific op-
portunities, and challenges related to CS in BCIs, such as major CS
reconstruction algorithms, sparse bases, and measurement matrices
used in processing EEG signals. Additionally, the review provides
an overview of the reconstruction-free CS approach, aiming to im-
prove EEG signal processing efficiency without full reconstruction,
and discusses opportunities and challenges in integrating the CS
framework into BCI applications.

The paper "Compressive Sensing of Electroencephalogram: A Re-
view" by de Oliveira et al. [10] explores the application of Compres-
sive Sensing (CS) to EEG signals. The review provides an overview
of the current state of CS applications for EEG, highlighting the
benefits such as efficient data acquisition and reduced power con-
sumption. The authors discuss challenges related to implementing
CS for EEG, including selecting appropriate measurement matrices
and reconstruction algorithms, and explore opportunities for im-
proving EEG signal processing efficiency through CS. This paper
highlights the potential of CS in EEG-based applications, particu-
larly in the context of BCIs and neurofeedback.

The paper "Compressed Sensing Approach for Physiological
Signals: A Review" by Lal et al. [22] reviews the application of Com-
pressed Sensing (CS) to various physiological signals, including
EEG, ECG, EMG, and EDA. The authors discuss the advantages
and disadvantages of using CS for these signals, evaluating its suit-
ability for hardware implementation. Performance metrics such as
Compression Ratio (CR), Signal-to-Noise Ratio (SNR), Percentage

Root Mean Square Difference (PRD), and processing time are em-
phasized for assessing CS performance. The paper also explores
current practices, challenges, and opportunities related to CS in
healthcare applications, highlighting its potential to address the
increasing volume of physiological data, transmission bandwidth
limitations, and power consumption in telemonitoring.

Our paper aims to take a more current and holistic approach to
analyzing contemporary data compression techniques specific to
EEG. By incorporating insights from recent advancements, such
as those presented by Gurve et al., de Oliveira et al., and Lal et
al., we aim to better understand the different techniques and accu-
rately compare their efficiency, accuracy, and computational costs.
Furthermore, we investigate how these identified methods can be
effectively applied to the EEGEyeNet dataset to optimize perfor-
mance and maintain data integrity. By doing so, we aim to deliver
the most up-to-date analysis of the most recent EEG data compres-
sion trends.

3 METHODS
3.1 Keywords
We conducted a systematic review using the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) method
to identify relevant EEG data compression techniques. The search
focused on research papers in the Google Scholar database.

We used the following keywords for the search: ("EEG" OR "Elec-
troencephalography" OR "EEG Signal") AND ("Data Compression" OR
"Compression") AND ("Multichannel" OR "Spatial") AND ("Lossy" OR
"Lossless") AND ("Neural Network Predictor" OR "Autoencoder" OR

Figure 1: Selection process for the papers
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"Wavelet Transform" OR "Channel Clustering" OR "Deep Learning")
AND ("Storage" OR "Transmission" OR "Mobile" OR "Review").

Filtered by titles that contained: ("EEG" OR "Electroencephalogra-
phy") AND ("Data Compression" OR "Compression")

The search strategy aimed to identify papers relevant to studies
and reviews in the context of EEG data compression techniques.
Figure 1 visually represents the search process, illustrating the
number of papers found at each step and the number of papers
excluded based on predefined inclusion and exclusion criteria. We
narrowed down fifteen papers for analyzing method frequency
and five papers for comparing the performance of specific EEG
compression algorithms.

3.2 Paper Selection Criteria
To maintain the relevance and quality of the compression tech-
niques we highlight, the research papers we selected were chosen
based on the following criteria:

• EEG Focus: The compression methods presented or dis-
cussed in the selected papers must be specifically applied to
and tested on multichannel EEG datasets.

• Publication Timeframe: To ensure the selected papers
present the most up-to-date methods, we only review re-
search published in 2020 or later.

• Relevance and Impact: To ensure that the reviewed papers
propose the most effective methods and are in line with
current standards, we select papers that are frequently cited
relative to their publication date, indicating their impact and
relevance in the field.

• Technique Diversity: Selected papers as a whole must
cover a range of compression techniques, including both
lossy and lossless methods, and recent advancements such
as compressive sensing and deep learning approaches.

By adhering to these criteria, we aim to provide a comprehen-
sive and current evaluation of EEG data compression techniques,
focusing on those that demonstrate high impact and relevance in
the field.

4 RESULTS
4.1 Types of Compression Algorithms
Table 2 reveals the distribution of data compression algorithm types,
including lossy and lossless, presented in the fifteen papers we se-
lected [1, 2, 8, 13–18, 21, 22, 37–39, 42]. However, it is also important
to note that some papers present both lossy and lossless compres-
sion, either separately or as a hybrid algorithm.

4.1.1 Lossy Algorithms. Lossy algorithms are of data compres-
sion in which some information is permanently removed during
the compression process. This often allows for much higher rates
of compression but also usually results in some error between the
original and reconstructed data.

Our review revealed that lossy compression algorithms are the
most common method for EEG data compression. This is likely due
to the high compression rates, which can significantly condense the
often large and high-dimensional EEG datasets. Even so, the devia-
tions present in the reconstructed data can have a significant impact
on signal accuracy and can pose issues in medical diagnostics.

4.1.2 Lossless Algorithms. Lossless compression algorithms are
techniques whereby no information is lost during compression.
This means that the reconstructed data will always contain the
same information as the original, though this often comes at a cost
to the compression rate.

Lossless algorithms are seemingly much more underutilized
than lossy algorithms. They typically yield much lower levels of
compression, meaning the size difference between the compressed
and original signals is a lot smaller. However, it is important to note
that since the reconstructed data from lossless algorithms is the
same as the original, there are no accuracy trade-offs to consider.
This is particularly important for medical applications, as there
is no compromise to diagnosis accuracy when using this type of
compression.

4.2 Compression Algorithms
In addition to presenting the relative frequency between the two
types of compression methods present in the fifteen selected papers
[1, 2, 8, 13–18, 21, 22, 37–39, 42]. We also report the individual
algorithms that most frequently appear within our review of the
literature. A breakdown of the top five can be found in Table 3.

4.2.1 Compressed Sensing. Compressed, or Compressive Sens-
ing (CS), is one of the most popular techniques for the compression
of EEG signals. This algorithm leverages the sparsity of signals
to reconstruct the input signal from only a few samples, vastly
reducing the amount of stored information needed to represent
a full signal [1]. CS also has the advantage that signals with per-
fect sparsity requirements can be reconstructed losslessly. Despite
compression being efficient, the reconstruction stage of CS is still
computationally intensive. Additionally, CS is also quite susceptible
to noise in most practical applications [9].

4.2.2 Signal Transforms. Signal transforms work by decompos-
ing a signal into some alternative domain. The most common are

Type Paper Count

Lossy 12
Lossless 5

Table 2: Most common types of EEG data compression that
were discussed in research papers (some papers may include
both lossy and lossless compressions and are counted as
both).

Algorithm Paper Count

Compressed Sensing 4
Signal Transformations 3

Clustering 3
Coding Algorithms 3

Autoencoders 2
Table 3: Breakdown of popular EEG compression Algorithms
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Discrete Cosine Transform (DCT), where the signal is decomposed
into cosine frequencies, and Discrete Wavelet Transform (DWT),
where the signal is decomposed into temporally dependent frequen-
cies. [38]. The coefficients of the decomposed signals can then be
extracted and stored. Contrary to CS, DCT, and DWT have complex
compression stages but are much easier to reconstruct [1]..

4.2.3 Clustering. Clustering algorithms, in general, operate by
separating similar samples into groups [14–16]. This takes advan-
tage of the redundancy and repetition present in EEG signals, al-
lowing the data to be effectively represented by their clusters, sig-
nificantly reducing the overall size.

4.2.4 Coding Algorithms. Coding algorithms aim to compress
data by encoding the optimal bit representations for parts of the
input, usually based on frequency, and are usually paired with
other compression techniques [14–16]. This method is particularly
effective for high-dimensionality EEG data with frequent signal
repetition, as the repeated sequences can be encoded to have sig-
nificantly lower bit representations.

4.2.5 Autoencoders. Autoencoders are a neural network with
two main structures: the encoder, which converts the given input
into a latent space, and the decoder, which reconstructs the original
data from the latent representation. Since autoencoders are based
on neural networks, they greatly benefit from the ability to adapt
to the data they are training on, allowing them to better filter out
the noise and redundant information from the compressed data
[18]. However, autoencoders can be bulky and hard to implement
on weaker devices. The training overhead may also be a concern
depending on the situation.

4.3 EEG Compression Evaluation
To better understand how effective specific algorithms are at com-
pressing EEG data, we selected five papers to compile and com-
pare their specific techniques and performance, shown in Table
4 [2, 15, 16, 21, 42]. The results collected from the five selected
papers show the algorithms are evaluated using Compression Ra-
tio (CR) and Percentage Root Mean Square Difference (PRD). CR
measures the compression level as a ratio between the original
and compressed data sizes. PRD measures the relative difference
between the original and reconstructed signals. Visualizations for
the performance metrics can be seen in Figure 2. The x-axis rep-
resents the different algorithms, and the y-axis represents CR and
PRD respectively. Higher CR and lower PRD values indicate better
performance.

4.3.1 Fractal Compression. In the fractal compression tech-
nique, EEG signals are separated into blocks and matched with
another block, typically much smaller, that contains similar signals
at some scale and offset factor. The original signal can then be
reconstructed by applying those factors to the smaller block.

This technique can achieve a CR as high as 160 with very low
PRD [2]. Additionally, the CR and PRD values are heavily dependent
on the block size, making this techniquemore adaptable for a variety
of applications.

4.3.2 VLSI. This technique integrates an algorithm for EEG data
compression into a Very Large Scale Integrated (VLSI) circuit [42].

Figure 2: Visualization of EEG compression algorithm per-
formance. Algorithms with ranging values are denoted by
their min and max. PRD means Percent Root Mean Square
Difference.

The algorithm first decomposes the signal via 2D DWT. Then Set
Partitioning in Hierarchical Trees (SPIHT) is utilized to encode the
wavelet coefficients as bitstreams, which act as memory locations
for retrieving the wavelet coefficients from the circuit.

The algorithm’s CR is mostly dependent on the number of dis-
carded bits from the stream with higher CR requiring more dis-
carded bits, but resulting in higher PRD. Alternatively, lossless com-
pression is possible by discarding zero bits, although at a fairly low

Technique CR PRD(%)

Fractal Compression 8-160 0.16-0.8
VLSI 1.95-31.83 0-96.26
ECoT 3.5 0
MCTF 4-32 38.52-55.43
HCHE 4.33 0

Table 4: Breakdown of the performance of techniques used in
5 of the reviewed papers. CR means the Compression Ratio.
PRD means Percent Root Mean Square Difference.
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CR, about 1.95. Even so, since this algorithm is optimized for spe-
cific hardware, the enhanced resource efficiency makes this method
particularly useful for low-memory EEG processing devices.

4.3.3 ECoT. In the Efficient Compression Technique (ECoT), EEG
signals are first clustered into groups using Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [15]. Then delta
encoding is used to save the difference between the indices of
the EEG data within each cluster. Finally, Huffman encoding is
used to further compress the final size of the list of delta encoding
differences.

While the CR of ECoT is not particularly high, it results in a
lossless compression. Additionally, ECoT also benefits from having
fairly fast compression and decompression times, improving the
overall speed of data transmission.

4.3.4 MCTF. In theMotion Compensated Temporal Filtering (MCTF)
algorithm, each channel of the EEG data is temporally segmented
and arranged into a 2D Group of Pictures (GOPs) [21]. Then mo-
tion compensating and temporal filtering are used to generate a
set of low-pass segments, high-pass segments, and motion vectors.
Next, 2D DWT is used to decompose the low-pass and high-pass
segments. Finally, SPIHT is used to encode the spatiotemporal co-
efficients from DWT.

MCTF achieved a CR of between 4 and 32 when tested using
combinations of GOP and segment sizes. Typically, larger GOP
sizes result in lower PRD levels, while higher segment sizes lead to
increased PRD.

4.3.5 HCHE. The combined Hierarchical Clustering and Huff-
man Encoding (HCHE) technique first utilizes agglomerative hier-
archical clustering to separate each sample into individual clusters,
which are then merged hierarchically [16]. Then Huffman encoding
is used to encode each cluster by its signal frequencies.

HCHE has one of the highest CR, when compared to the other
lossless compression techniques, at about 4.33. This makes HCHE
a highly efficient method for lossless EEG data compression.

5 DISCUSSION
Our comprehensive review of the current EEG data compression
field highlights the most popular methods over the past four years,
as well as providing a solid foundation for understanding and eval-
uating these techniques. While providing a general overview is
important, we also aim to examine which methodologies could
potentially apply to the EEGEyeNet dataset.

Lossy compression algorithms’ ability to exhibit high levels
of compression is especially helpful for a large dataset, such as
EEGEyeNet. However, it is also important to recognize the effect of
reconstruction error on gaze predictions from the decompressed
EEG signals.

Similarly, algorithms like discrete wavelet transform and cluster-
ing could potentially be useful for exploiting redundancy in large
EEG datasets. Although autoencoders may not be the most popular
method, they could still be useful for the EEGEyeNet dataset, con-
sidering the large sample count would directly benefit its ability to
interpret and encode the EEG signals.

Fractal compression is seemingly one of the best-performing
EEG data compression algorithms that has been evaluated. The

high compression ratio combined with very low reconstruction
error is optimal for balancing compression strength with recon-
struction accuracy. However, it is important to note that fractal
compression can be quite computationally intensive at low block
sizes, potentially slowing down processing on a large dataset [2].
The hierarchical clustering and Huffman encoding can exhibit com-
paratively high CR to other lossless algorithms. This is particularly
useful for the EEGEyeNet dataset, as high data integrity can be
maintained even after compression.

Limitations:While our systematic review provides insights into
the current EEG data compression field, there are still limitations
to acknowledge. Namely, due to time and selection criteria, our
review is not exhaustive, and thus other valuable resources may
exist. Additionally, as an evolving field, the information presented
in this paper can quickly become outdated, underscoring the need
for consistent and up-to-date reviews of current trends.

Future Work: In the future, investigations on the applications
of data compression techniques for other types of data on EEG
may be valuable, as some of the algorithms discussed, such as
SPIHT and fractal compression, were originally designed for image
compression [2, 42]. Examining other modalities may reveal key
insights on applying new techniques to improve EEG data com-
pression [4, 5, 24–28, 43–45]. Alternatively, as we have discussed
the potential for these algorithms to be applied to additional EEG
datasets, such as EEGEyeNet, conducting experiments to determine
the viability of these techniques empirically will be vital.

We hope our findings elucidate a deeper understanding of where
EEG data compression is today and better equip the data science
community to navigate this realm, expanding the accessibility and
advancement of EEG signal processing as a whole.

6 CONCLUSION
This paper presents a systematic review of trends in the current EEG
data compression space, illustrating the most up-to-date techniques
to provide a solid understanding of signal compression methods
for EEG data.

We find lossy algorithms to be the most common types of com-
pression used in recent years, with CS being the most common
algorithm in recent literature. To enable a more robust evaluation,
we also examine and report the performance of specific algorithms
for better comparison of their benefits and tradeoffs, observing
fractal compression to be the best option for high compression and
HCHE to be the best option for low reconstruction error.

Finally, we analyze the different algorithms to determine their
potential applications for new EEG datasets, namely EEGEyeNet.
Due to the dataset’s large sample size and synchronization with
eye-tracking recordings, algorithms with high compression rates
and low reconstruction error, such as fractal compression, are likely
to be most effective.

By addressing our initial research questions, we’ve conducted
a comprehensive evaluation of current methods in EEG data com-
pression, laying a solid foundation for further exploration in the
field.
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