Discover Our Brain Potential: Personalized Brain-Computer Interfaces with Machine Learning

Xiaodong Qu x.qu@gwu.edu Summer 2024

Elon Musk's Neuralink monkey brain demo explained

283,116 views · Apr 9, 2021

T 4.6K 📕 135 🍌 SHARE ≡+ SAVE

...

5

Clinical

Clustering: FEP patients vs health controls

Clinical, non-invasive, wired

Electroencephalography (EEG)

Biomarkers, machine learning

Human cognitive tasks and mental states

Variables	Controls (N=33)	Baseline Patients (N=20)	6m Follow-up Patients (N=18)	Statistics P value	
	Mean (Std Errors)	Mean (Std Errors)	Mean (Std Errors)		
Age	22.91 (3.9)	22.7 (3.2)	23.39 (3.3)	F = 0.19	
				p = 0.83	
Females (count, %)	12 (36.36%)	7 (35.00%)	6 (33.33%)	$\chi = 0.05$	
				p = 0.98	
Education (years)	15.55 (1.7)	14.95 (1.6)	15.06 (1.6)	F = 0.97	
				p = 0.388	
UPSA total score	83.45 (8.3)	79.99 (10.9)	82.52 (12.0)	F = 0.58	
				p = 0.56	
MCAS total score	54.75 (0.6)	48.1 (5.8)	48.0 (6.2)	F = 17.38	
				p < 0.0001	
MATRICS Neurocognitive Composite Score	50.45 (5.2)	46.21 (6.4)	48.63 (8.1)	F = 2.70	
				p = 0.07	
MATRICS Social Subscore	54.52 (6.6)	53.58 (11.5)	55.33 (13.8)	F = 0.13	
				p = 0.88	
TASIT	55.77 (4.5)	53.69 (6.4)	54.67 (5.2)	F = 0.579	
				p = 0.46	
PANSS positive	N/A	14.45 (6.8)	13.18 (5.4)	t = 0.62	
				p = 0.27	
PANSS negative	N/A	12.5 (3.8)	10.41 (3.5)	t = 1.70	
				p = 0.048	
PANSS general	N/A	30.6 (7.9)	26.70 (8.4)	t = 1.45	
				p = 0.08	
PANSS total	N/A	57.55 (16.7)	50.29 (16.1)	t = 1.33	
				p = 0.09	
Chlorpromazine equivalents	N/A	226.51 (234.3)	292.45 (241.6)	t = -0.74	
				p = 0.77	

TABLE 1 | Comparisons between controls, baseline patients, and 6-month follow-up patients.

Means with standard deviations in parentheses unless specified otherwise; UPSA, UCSD Performance-based Skills Assessment; MCAS, Multnomah Community Ability Scale; MATRICS, Measurement and Treatment Research to Improve Cognition in Schizophrenia; TASIT, The Awareness of Social Inference Test; PANSS, Positive and Negative Syndrome Scale; CPZ, chlorpromazine equivalents.

MMN in FEP-Baseline

MMN in FEP-follow-up

Non-clinical

Multi-Class Time Continuity Voting for EEG Classification

Non-Clinical, Non-invasive, wireless

Everyone can use it everyday

Human-In-The-Loop Machine Learning

Interpretable results

MUSE headband by InteraXon

Tasks

From Neuroscience:

learning, memory, behavior, perception, and consciousness

From four basic language skills:

listening, speaking, reading, and writing; [speaking -> noise]

What we have done:

reading, writing, typing, thinking, recalling, counting, drawing, solving math problems, and programming

Fig. 2. Session (S) with Task (T) order Fig. 3. 10-20 System, four electrodes used on Muse Headset were highlighted

Relative EEG bands for Subjects 1 and 2

Relative EEG bands for Subject 1

subject 1 session 1

23

Time-Series, Time Continuity Voting (TCV)

Compare

Machine Learning (Single Algorithms)

LDA, SVM, KNN etc. - Adequate Accuracy - Runtime low (Fast)

Machine Learning (**Ensemble Methods**)

Random Forest, Adaboost, XGBoost, etc - Better Accuracy - Runtime increased

Machine Learning (**Deep Learning**)

CNN, RNN, Transformer, etc. - higher Accuracy - Require Big Data & GPU (Slow)

Fig. 8. Task Prediction Accuracy, average of all twelve subjects.

						0.8
T1:Think	0.58	0.08	0.16	0.15	0.08	0.7
T2:Count	0.14	0.6	0.12	0.13	0.14	0.6
T3:Recall	0.19	0.1	0.49	0.15	0.11	0.5
T4:Breathe	0.09	0.07	0.08	0.72	0.08	- 0.3
T5:Draw	0.05	0.05	0.05	0.07	0.82	0.2
	T1	T2	Т3	T4	T5	

Fig. 1. Our New Algorithm: Time Majority Voting

Fig. 2. Accuracy for Different Algorithms

Fig. 5. TMV, RF Phase 2, RBF SVM Phase 2, RF phase 1, and RBF SVM Phase 1

Fig. 1: Model architecture. Every EEG input is fed into the Temporal and Spectral Attention modules. The two outputs of the self-attention modules are added to the original input with weights and produce an attention map, which is then sent into the threelayers CNN. Two fully connected layers form the end of the CNN and make the task prediction (one of three classes for the BCI III dataset or one of five classes for the RWT dataset).

Table 2. Ablation Experiment			
	Accuracy on RWT (%)	Accuracy on BCI III (%)	
Full Model	46	79	
CNN	36	73	
Temporal Attention	33	69	
Spectral Attention	38	70	
Temporal Attention + CNN	39	75	
Spectral Attention + CNN	41	77	

Table 2: Ablation Experiment

Figure 2: Proposed EEGViT, a hybrid ViT (Vision Transformer) architecture designed specifically for EEG raw signal as input. A two-step convolution operation is applied to generate patch embeddings. Then we add positional embeddings and pass the resulting sequence into ViT layers. The illustration of positional embedding and ViT layer is based on [10].

Model	Absolute Position RMSE (mm)			
Naive Guessing	123.3 ± 0.0			
KNN	119.7 ± 0			
RBF SVR	123 ± 0			
Linear Regression	118.3 ± 0			
Ridge Regression	118.2 ± 0			
Lasso Regression	118 ± 0			
Elastic Net	118.1 ± 0			
Random Forest	116.7 ± 0.1			
Gradient Boost	117 ± 0.1			
AdaBoost	119.4 ± 0.1			
XGBoost	118 ± 0			
CNN	70.4 ± 1.1			
PyramidalCNN	73.9 ± 1.9			
EEGNet	81.3 ± 1.0			
InceptionTime	70.7 ± 0.8			
Xception	78.7 ± 1.6			
ViT-Base	61.5 ± 0.6			
ViT-Base Pre-trained	58.1 ± 0.6			
EEGViT	61.7 ± 0.6			
EEGViT Pre-trained	55.4 ± 0.2			

Table 4: Comparison of Root Mean Squared Error (RMSE) loss in millimeters for different models on the Absolute Position Task. Original error is in pixels, and we convert it into millimeters by 2 pixels/mm for better interpretation. Lower RMSE values indicate better performance as they represent closer estimations to the actual values. The values represent the mean and standard deviation of 5 runs.

t,

Algorithms

Abbreviation	Definition		
AE	Autoencoder		
ANN	Artificial Neural Network		
CNN	Convolutional Neural Network		
CV	Computer Vision		
DBN	Deep Belief Network		
DNN	Deep Neural Network		
GAN	Generative Adversarial Network		
KNN	K-Nearest Neighbor		
LSTM	Long Short-Term Memory		
RF Random Forest			
RNN	Recurrent Neural Network		
SVM	SVM Support Vector Machine		
ViT	Vision Transformer		

Table 1: List of Algorithm Acronyms

Algorithms

Algorithm	Paper Count	MI	Seizure	Emotion
CNN	22	16	1	1
RNN	14	3	1	2
Transformer	14	3	2	0
ANN	5	0	0	0
SVM	4	1	0	1
KNN	4	0	1	1
RF	3	0	0	0
AE	2	0	0	0

Table 3: Algorithm Breakdown for Non-Review Papers

Datasets

Dataset	Task	Year	Cited
DEAP [17]	Emotion	2011	3439
PhysioNet [28]	MI	2000	3140
BCI Competition IV [34]	MI	2012	783
Dreamer [15]	Emotion	2016	517
SEED [6]	Emotion	2013	358
Bonn [20]	Seizure	2013	316
CHB-MIT [24]	Seizure	2021	21
EEGEyeNet [13]	MI	2021	16

Table 4: Dataset Breakdown for Non-Review Papers

Machine Learning, Deep Learning and AI

Not Active for this presentation

Slides more for possible Q and A

Research Lab Overview

Current Composition

- 15 students: 9 undergraduate + 6 graduate
- Weekly meetings (remote/in-person)

Research Goals

- 1-2 years: Pipeline from learning to publishing
- Summer-to-summer research milestones

Research Lab Overview

Conferences and Achievements

- Attendance at **top CS conferences** (virtual/hybrid)
- Focus on home conferences with previous publications

What We Offer

- Structured research training for new members
- Opportunities to **publish in top venues**