CSCI 3411 - Operating Systems

Posted on August 21, 2017 by Gabriel Parmer

This course covers the fundamental concepts of operating systems, focusing on resource management and abstraction. This includes OS structure, processes and thread management, communication with peripherals (I/O), synchronization, deadlocks, memory management, Virtual Machines, cloud infrastructures, and abstractions for cloud computation. The workload for this class is heavy and programming intensive.

Course Info

Instructors Contact info:

Fall 2017 Class Time/Location:

Office Hours:

TODO

You should immediately fill out the course survey (which requires you to make/have a github account):

Course Overview

Learning Outcomes

Objectives - In completing this class, students will…

Structure - This class is broken into two main activities: lectures and lab.

Direct Instruction and Independent Learning

Each semester, you’re expected to spend at least:

Course Prerequisites and Student Responsibilities

Prerequisites:

Responsibilities - Students must

Course Schedule

Topic xv6 Book Chapters/Additional Reading1 Silberschatz Chapters2
OS Fundamentals: Hardware and Structure 0, 1, 3 and this post 1, 2
Processes, IPC, Threads, Isolation this post 3, 4
Scheduling and Critical Sections 5, 4 5, 6, 19
Mutexes, Condition Vars, Deadlock N/A 6, 7
Midterm all of the things…
Memory Management and Allocation N/A 8
Memory Protection 2 9
File Systems and Storage 6 10, 11, 12, 13
Wildcard N/A N/A
Final all of the things…

You can find the lectures on Piazza after they are delivered. For your reference, all of the lecture’s pdfs are on the following topics:

Course Material

Encouraged (but optional) Text:

If you have trouble understanding the xv6 source code, I recommend the following resources:

You can fork the xv6 source on github. When you do, test that you can run it with make, and make qemu.

In the end, you have to get comfortable walking through the code, and understanding it. Using a code indexing system will make this easier. ggtags or ctags for emacs does great, but there are corresponding technologies for nearly all editors.

If you’re having trouble with C, here is a list of references:

It is your responsibility to quickly get up to speed in C, so please use these resources.

Assignment Submission

All of your homeworks for this class will be submitted via github. The last commit that you make to the repo will be graded, and the lateness penalties of that commit (see “Late Policy” below) will apply. Please do not make pushes to your repo after the version you want graded. Please also not that it is necessary to issue a git pull up to the github repo for submission. Local commits to your own repo do not update github, thus cannot be counted as submission.

Grading

Grades will be assigned with the following proportions:

Homeworks include smaller programming assignment, written responses, and a long final programming project.

Participation will be graded not only on attendance, but also on interactivity and involvement during class and lab.

If needs be, there will be short quizzes at the beginning of classes. These will only happen if people make it a habit of not coming to class, or coming late.

Late Policy:

Because homeworks are due every week or every other week, it is too harmful to get behind on them. Thus the late policy is quite strict to discourage procrastination.

Academic Honesty

Just as you can do a google search for code online, it is trivial for us to do the same. We have caught numerous people cheating in the past in this way. If you feel pressured about an assignment, please come see me instead of cheating.

You are not allowed to collaborate on the homeworks and the lab assignments. The group projects require collaboration within each group, but no collaboration between teams is permitted. Please refer to the academic integrity policy linked from the course web page. This policy will be strictly enforced. If you’re having significant trouble with an assignment, please contact me. If you have not signed the academic integrity statement for homework 0, you will not receive a passing grade for the class.

Additional Material

xv6

To run xv6, you need qemu installed. If you aren’t running Linux, then you might execute Linux in a virtual machine (e.g. using Virtual Box or VMWare Workstation), and qemu within Linux. I believe others have gotten qemu executing in OSX as well (but it takes installing a cross-compiled ELF-version of gcc), so discuss on Piazza if you’re interested in that.

$ git clone https://github.com/gparmer/gwu-xv6.git xv6
$ cd xv6
$ make qemu

Simple!

Note that the xv6 book has a great overview of the design of the entire system. Please use it as a resource if you need it. Note that since you don’t own this repo, you cannot git push to it. You have to fork it on github to become the owner of your own fork. For this class, all assignments will be completed on repos that we provide for you.

Some hints for understanding the code-base. All code that runs in user-level is in the files that correspond to the entries of UPROGS, and all of the header files that they include. The rest of the code executes in the kernel. Thus to add a new program, you only need to provide the .c file, and add it in a similar manner to UPROGS.

When you’re looking at a .c or .h file, always make sure you understand if it is executing in user-space (thus must make a system call to enter the kernel), or is in the kernel (thus can directly call functions within the kernel). Using a code indexing system will make it easier to walk through the source code. ggtags or ctags for emacs does great, but there are corresponding technologies for nearly all editors.

git and github

Using github. github provides a wonderful set of repository management features online. You can go through the github bootcamp if you don’t know how to use it.

You can use github to coordinate between team members in many different ways. I’d strongly recommend that when working in a team, you use the feature branch workflow pattern of interaction. At the highest-level, this means that each team member will be working on their features on separate branches, and will integrate them into the mainline to coordinate with everyone else.

A few of the ways to interact with github:

Using git. I’m not going to do a deep dive into using git here, and expect that you can figure out the main features online. Some quick git tips can be found at the bottom of software engineering guide. An incomplete list of commands that you can use with git include:

Style

Please document in your repository (e.g. in the README.md) which coding style you’re using. By default, the xv6 repo we use is formatted in accordance with the Composite Style Guide. See that description to understand why style is important, and why we choose the style we do.

It is important, when you’re working on a team to use a consistent style. It is more important to choose one and stick with it, than to choose the “perfect style”. You can find many different styles online, including

Though not relevant for this class, many modern languages have prescribed styles such as go, and Rust.


  1. Find the book online↩︎

  2. Silberschatz chapters are specified with respect to the 9th edition↩︎